Contributions to Mineralogy and Petrology

, Volume 163, Issue 4, pp 701–724

The legacy of crystal-plastic deformation in olivine: high-diffusivity pathways during serpentinization

  • Oliver Plümper
  • Helen E. King
  • Christian Vollmer
  • Quentin Ramasse
  • Haemyeong Jung
  • Håkon Austrheim
Original Paper

Abstract

Crystal-plastic olivine deformation to produce subgrain boundaries composed of edge dislocations is an inevitable consequence of asthenospheric mantle flow. Although crystal-plastic deformation and serpentinization are spatio-temporally decoupled, we identified compositional readjustments expressed on the micrometric level as a striped Fe-enriched (\( \bar{X}_{\text{Fe}} \) = 0.24 ± 0.02 (zones); 0.12 ± 0.02 (bulk)) or Fe-depleted (\( \bar{X}_{\text{Fe}} \) = 0.10 ± 0.01 (zones); 0.13 ± 0.01 (bulk)) zoning in partly serpentinized olivine grains from two upper mantle sections in Norway. Focused ion beam sample preparation combined with transmission electron microscopy (TEM) and aberration-corrected scanning TEM, enabling atomic-level resolved electron energy-loss spectroscopic line profiling, reveals that every zone is immediately associated with a subgrain boundary. We infer that the zonings are a result of the environmental Fe2+Mg−1 exchange potential during antigorite serpentinization of olivine and the drive toward element exchange equilibrium. This is facilitated by enhanced solid-state diffusion along subgrain boundaries in a system, which otherwise re-equilibrates via dissolution-reprecipitation. Fe enrichment or depletion is controlled by the silica activity imposed on the system by the local olivine/orthopyroxene mass ratio, temperature and the effect of magnetite stability. The Fe-Mg exchange coefficients \( K_{\text{D}}^{{{\text{Atg}}/{\text{Ol}}}} \) between both types of zoning and antigorite display coalescence toward exchange equilibrium. With both types of zoning, Mn is enriched and Ni depleted compared with the unaffected bulk composition. Nanometer-sized, heterogeneously distributed antigorite precipitates along olivine subgrain boundaries suggest that water was able to ingress along them. Crystallographic orientation relationships gained via electron backscatter diffraction between olivine grain domains and different serpentine vein generations support the hypothesis that serpentinization was initiated along olivine subgrain boundaries.

Keywords

Crystal-plastic deformation Diffusion Dislocation Dissolution-reprecipitation Element exchange Serpentinization 

References

  1. Ando JI, Shibata Y, Okajima Y, Kanagawa K, Furusho M, Tomioka N (2001) Striped iron zoning of olivine induced by dislocation creep in deformed peridotites. Nature 414(6866):893–895. doi:10.1038/414893a CrossRefGoogle Scholar
  2. Ando JI, Tomioka N, Matsubara K, Inoue T, Irifune T (2006) Mechanism of the olivine-ringwoodite transformation in the presence of aqueous fluid. Phys Chem Miner 33(6):377–382. doi:10.1007/s00269-006-0082-1 CrossRefGoogle Scholar
  3. Arredondo M, Ramasse QM, Weyland M, Mahjoub R, Vrejoiu I, Hesse D, Browning ND, Alexe M, Munroe P, Nagarajan V (2010) Direct evidence for cation non-stoichiometry and Cottrell atmospheres around dislocation cores in functional oxide interfaces. Adv Mater 22(22):2430–2434. doi:10.1002/adma.200903631 CrossRefGoogle Scholar
  4. Austrheim H, Prestvik T (2008) Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, North-central Norway. Lithos 104(1–4):177–198. doi:10.1016/j.lithos.2007.12.006 CrossRefGoogle Scholar
  5. Bach W, Frueh-Green GL (2010) Alteration of the oceanic lithosphere and implications for seafloor processes. Elements 6(3):173–178. doi:10.2113/gselements.6.3.173 CrossRefGoogle Scholar
  6. Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15° N (ODP Leg 209, Site 1274). Geophys Res Lett 33(13). doi:10.1029/2006GL025681
  7. Bakker RJ, Jansen JB (1994) A mechanism for preferential H2O leakage from fluid inclusions in quartz, based on TEM observations. Contrib Mineral Petrol 116(1–2):7–20. doi:10.1007/BF00310686 CrossRefGoogle Scholar
  8. Baxter EF (2003) Natural constraints on metamorphic reaction rates. Geol Soc Spec Publ 220:183–202. doi:10.1144/GSL.SP.2003.220.01.11 CrossRefGoogle Scholar
  9. Blacic JD (1972) Effects of water in the experimental deformation of olivine. In: Heard HC, Borg IY, Carter NL, Raleigh CB (eds) Flow and fracture of rocks, vol. American Geophysical Union, pp 109–115Google Scholar
  10. Boudier F, Baronnet A, Mainprice D (2010) Serpentine mineral replacements of natural olivine and their seismic implications: oceanic lizardite versus subduction-related antigorite. J Petrol 51(1–2):495–512. doi:10.1093/petrology/egp049 CrossRefGoogle Scholar
  11. Boullier AM, Nicolas A (1970) Classification of textures and fabrics of peridotite xenoliths from south African kimberlites. Phys Chem Earth 9:467–475. doi:10.1016/0079-1946(75)90034-8 CrossRefGoogle Scholar
  12. Buban JP, Ramasse Q, Gipson B, Browning ND, Stahlberg H (2010) High-resolution low-dose scanning transmission electron microscopy. J Electron Microsc 59(2):103–112. doi:10.1093/jmicro/dfp052 CrossRefGoogle Scholar
  13. Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks. Springer, BerlinGoogle Scholar
  14. Bucher-Nurminen K (1991) Mantle fragments in the Scandinavian Caledonides. Tectonophysics 190(2–4):173–192. doi:10.1016/0040-1951(91)90429-V CrossRefGoogle Scholar
  15. Carter NL, Avè Lallemant HG (1970) High temperature flow of dunite and peridotite. Geol Soc Am Bull 81:2181–2202. doi:10.1130/0016-7606 CrossRefGoogle Scholar
  16. Chopra PN, Paterson MS (1984) The role of water in the deformation of dunite. J Geophys Res 89(NB9):7861–7876. doi:10.1029/JB089iB09p07861 Google Scholar
  17. Coleman RG, Keith TE (1971) Chemical study of serpentinization—Burro Mountain, California. J Petrol 12(2):311–328. doi:10.1093/petrology/12.2.311 Google Scholar
  18. Cottrell AH, Bilby BA (1949) Dislocation theory of yielding and strain ageing of iron. P Phys Soc Lond A 62(349):49–62. doi:10.1088/0370-1298/62/1/308 CrossRefGoogle Scholar
  19. Crerar DA, Barnes HL (1974) Deposition of deep-sea manganese nodules. Geochim Cosmochim Ac 38(2):279–300. doi:10.1016/0016-7037(74)90111-2 CrossRefGoogle Scholar
  20. Dawson P, Hadfield CD, Wilkinson GR (1973) Polarized Infrared and Raman-Spectra of Mg(OH)2 and Ca(OH)2. J Phys Chem Solids 34(7):1217–1225. doi:10.1016/S0022-3697(73)80212-4 CrossRefGoogle Scholar
  21. de Leeuw NH, Parker SC, Catlow CRA, Price GD (2000) Modelling the effect of water on the surface structure and stability of forsterite. Phys Chem Miner 27(5):332–341. doi:10.1007/s002690050262 CrossRefGoogle Scholar
  22. Demouchy S (2010) Diffusion of hydrogen in olivine grain boundaries and implications for the survival of water-rich zones in the Earth’s mantle. Earth Planet Sci Lett 295(1–2):305–313. doi:10.1016/j.epsl.2010.04.019 CrossRefGoogle Scholar
  23. Doelsch E, Rose J, Masion A, Bottero JY, Nahon D, Bertsch PM (2002) Hydrolysis of iron(II) chloride under anoxic conditions and influence of SiO4 ligands. Langmuir 18(11):4292–4299. doi:10.1021/La011605r CrossRefGoogle Scholar
  24. Dohmen R, Chakraborty S (2007) Fe–Mg diffusion in olivine II: point defect chemistry, change of diffusion mechanisms and a model for calculation of diffusion coefficients in natural olivine. Phys Chem Miner 34(6):409–430. doi:10.1007/s00269-007-0158-6 CrossRefGoogle Scholar
  25. Dohmen R, Milke R (2010) Diffusion in polycrystalline materials: grain boundaries, mathematical models, and experimental data. In: Zhang Y, Cherniak DJ (eds) Reviews in mineralogy & geochemistry, vol 72. pp 921–970. doi:10.2138/rmg.2010.72.21
  26. Escartin J, Hirth G, Evans B (1997) Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges. Earth Planet Sci Lett 151(3–4):181–189. doi:10.1016/S0012-821X(97)81847-X CrossRefGoogle Scholar
  27. Escartin J, Hirth G, Evans B (2001) Strength of slightly serpentinized peridotites: implications for the tectonics of oceanic lithosphere. Geology 29(11):1023–1026. doi:10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2 CrossRefGoogle Scholar
  28. Evans BW (2004) The serpentinite multisystem revisited: chrysotile is metastable. Int Geol Rev 46(6):479–506. doi:10.2747/0020-6814.46.6.479 CrossRefGoogle Scholar
  29. Evans BW (2008) Control of the products of serpentinization by the Fe2+Mg−1 exchange potential of olivine and orthopyroxene. J Petrol 49(10):1873–1887. doi:10.1093/petrology/egn050 CrossRefGoogle Scholar
  30. Evans BW (2010) Lizardite versus antigorite serpentinite: magnetite, hydrogen, and life(?). Geology 38(10):879–882. doi:10.1130/G31158.1 CrossRefGoogle Scholar
  31. Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48(7):1351–1368. doi:10.1093/petrology/egm021 CrossRefGoogle Scholar
  32. Furnes H, Pedersen RB, Stillman CJ (1988) The Leka Ophiolite complex, central Norwegian Caledonides—field characteristics and geotectonic significance. J Geol Soc Lond 145:401–412. doi:10.1144/gsjgs.145.3.0401 CrossRefGoogle Scholar
  33. Hacker BR, Christie JM (1991) Observational evidence for a possible new diffusion path. Science 251(4989):67–70. doi:10.1126/science.251.4989.67 CrossRefGoogle Scholar
  34. Harlov DE, Wirth R, Forster HJ (2005) An experimental study of dissolution-reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150(3):268–286. doi:10.1007/s00410-005-0017-8 CrossRefGoogle Scholar
  35. Heinemann S, Wirth R, Gottschalk M, Dresen G (2005) Synthetic [100] tilt grain boundaries in forsterite: 9.9 to 21.5 degrees. Phys Chem Miner 32(4):229–240. doi:10.1007/s00269-005-0448-9 Google Scholar
  36. Hier-Majumder S, Anderson IM, Kohlstedt DL (2005) Influence of protons on Fe–Mg interdiffusion in olivine. J Geophys Res-Sol Ea 110(B2). doi:10.1029/2004JB003292
  37. Holness MB (2006) Melt-solid dihedral angles of common minerals in natural rocks. J Petrol 47(4):791–800. doi:10.1093/petrology/egi094 CrossRefGoogle Scholar
  38. Holzapfel C, Chakraborty S, Rubie DC, Frost DJ (2007) Effect of pressure on Fe–Mg, Ni and Mn diffusion in (FexMg1-x)2SiO4 olivine. Phys Earth Planet In 162(3–4):186–198. doi:10.1016/j.pepi.2007.04.009 CrossRefGoogle Scholar
  39. Huang J, Meyer M, Pontikis V (1989) Is pipe diffusion in metals vacancy controlled—a molecular-dynamics study of an edge dislocation in copper. Phys Rev Lett 63(6):628–631. doi:10.1103/PhysRevLett.63.628 CrossRefGoogle Scholar
  40. Hulme SM, Wheat CG, Fryer P, Mottl MJ (2010) Pore water chemistry of the Mariana serpentinite mud volcanoes: a window to the seismogenic zone. Geochem Geophy Geosy 11. doi:10.1029/2009GC002674
  41. Iyer K, Austrheim H, John T, Jamtveit B (2008a) Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite complex, Norway. Chem Geol 249(1–2):66–90. doi:10.1016/j.chemgeo.2007.12.005 CrossRefGoogle Scholar
  42. Iyer K, Jamtveit B, Mathiesen J, Malthe-Sorenssen A, Feder J (2008b) Reaction-assisted hierarchical fracturing during serpentinization. Earth Planet Sci Lett 267(3–4):503–516. doi:10.1016/j.epsl.2007.11.060 CrossRefGoogle Scholar
  43. Jamtveit B, Austrheim H (2010) Metamorphism: the role of fluids. Elements 6(3):153–158. doi:10.2113/gselements.6.3.153 CrossRefGoogle Scholar
  44. Jamtveit B, Malthe-Sorenssen A, Kostenko O (2008) Reaction enhanced permeability during retrogressive metamorphism. Earth Planet Sci Lett 267(3–4):620–627. doi:10.1016/j.epsl.2007.12.016 CrossRefGoogle Scholar
  45. Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293(5534):1460–1463. doi:10.1126/science.1062235 CrossRefGoogle Scholar
  46. Keller LM, Abart R, Wirth R, Schmid DW, Kunze K (2006) Enhanced mass transfer through short-circuit diffusion: growth of garnet reaction rims at eclogite facies conditions. Am Mineral 91(7):1024–1038. doi:10.2138/Am.2006.2068 CrossRefGoogle Scholar
  47. Kerschhofer L, Sharp TG, Rubie DC (1996) Intracrystalline transformation of olivine to wadsleyite and ringwoodite under subduction zone conditions. Science 274(5284):79–81. doi:10.1126/science.274.5284.79 CrossRefGoogle Scholar
  48. Kilaas R (1998) Optimal and near-optimal filters in high-resolution electron microscopy. J Microsc-Oxford 190:45–51. doi:10.1046/j.1365-2818.1998.3070861.x CrossRefGoogle Scholar
  49. King HE, Plumper O, Putnis A (2010) Effect of secondary phase formation on the carbonation of olivine. Environ Sci Technol 44(16):6503–6509. doi:10.1021/Es9038193 CrossRefGoogle Scholar
  50. Kitamura M, Matsuda H, Morimoto N (1986) Direct observation of the cottrell atmosphere in olivine. Proc Jpn Acad Ser B-Phys Biol Sci 62(5):149–152CrossRefGoogle Scholar
  51. Klein F, Bach WG (2009) Fe-Ni-Co-O-S phase relations in peridotite-seawater interactions. J Petrol 50(1):37–59. doi:10.1093/petrology/egn071 CrossRefGoogle Scholar
  52. Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquo T (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15 degrees N on the Mid-Atlantic Ridge. Geochim Cosmochim Ac 73(22):6868–6893. doi:10.1016/j.gca.2009.08.021 CrossRefGoogle Scholar
  53. Klinger L, Rabkin E (1999) Beyond the Fisher model of grain boundary diffusion: effect of structural inhomogeneity in the bulk. Acta Mater 47(3):725–734. doi:10.1016/S1359-6454(98)00420-0 CrossRefGoogle Scholar
  54. Konrad-Schmolke M, O’Brien PJ, Heidelbach F (2007) Compositional re-equilibration of garnet: the importance of sub-grain boundaries. Eur J Mineral 19(4):431–438. doi:10.1127/0935-1221/2007/0019-1749 CrossRefGoogle Scholar
  55. Kramar N, Cosca MA, Buffat PA, Baumgartner LP (2003) Stacking fault-enhanced argon diffusion in naturally deformed muscovite. In: Vance D, Muller W, Villa IM (eds) Geol Soc Spec Publ, vol 220. pp 249–260Google Scholar
  56. Kubo T, Ohtani E, Kato T, Shinmei T, Fujino K (1998) Effects of water on the alpha-beta transformation kinetics in San Carlos Olivine. Science 281(5373):85–87. doi:10.1126/science.281.5373.85 CrossRefGoogle Scholar
  57. Kunugiza K (1982) Formation of zoning of olivine with progressive metamorphism of serpentinite—an example from the Ryumon peridotite body of Sanbagawa metamorphic belt, Kii peninsula. J Jpn Ass Min Pet Econ Geol 77:157–170CrossRefGoogle Scholar
  58. Lee JKW (1995) Multipath diffusion in geochronology. Contrib Mineral Petrol 120(1):60–82. doi:10.1007/BF00311008 CrossRefGoogle Scholar
  59. Legros M, Dehm G, Arzt E, Balk TJ (2008) Observation of giant diffusivity along dislocation cores. Science 319(5870):1646–1649. doi:10.1126/science.1151771 CrossRefGoogle Scholar
  60. Love GR (1964) Dislocation pipe diffusion. Acta Metall Mater 12(6):731–737. doi:10.1016/0001-6160(64)90220-2 CrossRefGoogle Scholar
  61. Mackwell SJ, Kohlstedt DL (1990) Diffusion of hydrogen in olivine—implications for water in the mantle. J Geophys Res-Solid 95(B4):5079–5088. doi:10.1029/JB095iB04p05079 Google Scholar
  62. Mark DF, Kelley SP, Lee MR, Parnell J, Sherlock SC, Brown DJ (2008) Ar–Ar dating of authigenic K-feldspar: quantitative modelling of radiogenic argon-loss through subgrain boundary networks. Geochim Cosmochim Ac 72(11):2695–2710. doi:10.1016/j.gca.2008.03.018 CrossRefGoogle Scholar
  63. Martin B, Fyfe WS (1970) Some experimental and theoretical observations on kinetics of hydration reactions with particular reference to serpentinization. Chem Geol 6(3):185–202. doi:10.1016/0009-2541(70)90018-5 CrossRefGoogle Scholar
  64. Mehrer H (2007) Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Springer, BerlinGoogle Scholar
  65. Mei S, Kohlstedt DL (2000) Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J Geophys Res-Sol Ea 105(B9):21471–21481. doi:10.1029/2000JB900180 Google Scholar
  66. Moore AC, Hultin I (1980) Petrology, mineralogy, and origin of the Feragen ultramafic body, Sør-Trondelag, Norway. Norsk Geol Tidsskr 60(4):235–254Google Scholar
  67. Murata K, Maekawa H, Ishii K, Mohammad YO, Yokose H (2009) Iron-rich stripe patterns in olivines of serpentinized peridotites from Mariana forearc seamounts, western Pacific. J Miner Petrol Sci 104(3):199–203. doi:10.2465/jmps.081022h CrossRefGoogle Scholar
  68. Nicolas A, Christensen NI (1987) Formation of anisotropy in upper mantle peridotite: a review. In: Fuchs K, Foridevaux C (eds) Composition, structure and dynamics of the lithosphere-asthenosphere system, vol. American Geophysical Union, pp 111–123Google Scholar
  69. Pattison DRM (1994) Are reversed Fe–Mg exchange and solid-solution experiments really reversed. Am Mineral 79(9–10):938–950Google Scholar
  70. Pattison DRM, Newton RC (1989) Reversed experimental calibration of the garnet-clinopyroxene Fe–Mg exchange thermometer. Contrib Mineral Petrol 101(1):87–103. doi:10.1007/BF00387203 CrossRefGoogle Scholar
  71. Petry C, Chakraborty S, Palme H (2004) Experimental determination of Ni diffusion coefficients in olivine and their dependence on temperature, composition, oxygen fugacity, and crystallographic orientation. Geochim Cosmochim Ac 68(20):4179–4188. doi:10.1016/j.gca.2004.02.024 CrossRefGoogle Scholar
  72. Pokrovski GS, Schott J, Garges F, Hazemann JL (2003) Iron(III)-silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy. Geochim Cosmochim Ac 67(19):3559–3573. doi:10.1016/S0016-7037(03)00160-1 CrossRefGoogle Scholar
  73. Pouchou JL, Pichoir F (1984) A new model for quantitative X-ray-microanalysis .1. Application to the analysis of homogeneous samples. Rech Aerospatiale (3):167–192Google Scholar
  74. Prestvik T (1972) Alpine-type mafic and ultramafic rocks of Leka, Nord-Trøndelag. Nor Geol Unders 273:23–34Google Scholar
  75. Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, CambridgeGoogle Scholar
  76. Putnis A (2009) Mineral replacement reactions. Thermodynamics and kinetics of water-rock interaction. In: Oelkers EH, Schott J (eds) Reviews in mineralogy and geochemistry, vol 70, pp 87–124. doi:10.2138/rmg.2009.70.3
  77. Putnis A, Austrheim H (2010) Fluid-induced processes: metasomatism and metamorphism. Geofluids 10(1–2):254–269. doi:10.1111/j.1468-8123.2010.00285.x Google Scholar
  78. Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425(6956):367–373. doi:10.1038/Nature01961 CrossRefGoogle Scholar
  79. Raufaste C, Jamtveit B, John T, Meakin P, Dysthe DK (2011) The mechanism of porosity formation during solvent-mediated phase transformations. P Roy Soc-Math Phy 467(2129):1408–1426. doi:10.1098/rspa.2010.0469 Google Scholar
  80. Reddy SM, Timms NE, Trimby P, Kinny PD, Buchan C, Blake K (2006) Crystal-plastic deformation of zircon: a defect in the assumption of chemical robustness. Geology 34(4):257–260. doi:10.1130/G22110.1 CrossRefGoogle Scholar
  81. Rinaudo C, Gastaldi D, Belluso E (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can Mineral 41:883–890. doi:10.2113/gscanmin.41.4.883 CrossRefGoogle Scholar
  82. Sader K, Schaffer B, Vaughan G, Brydson R, Brown A, Bleloch A (2010) Smart acquisition EELS. Ultramicroscopy 110(8):998–1003. doi:10.1016/j.ultramic.2010.01.012 CrossRefGoogle Scholar
  83. Shervais JW, Kolesar P, Andreasen K (2005) A field and chemical study of serpentinization—Stonyford, California: chemical flux and mass balance. Int Geol Rev 47(1):1–23. doi:10.2747/0020-6814.47.1.1 CrossRefGoogle Scholar
  84. Sleep NH, Meibom A, Fridriksson T, Coleman RG, Bird DK (2004) H2-rich fluids from serpentinization: geochemical and biotic implications. Proc Natl Acad Sci USA 101(35):12818–12823. doi:10.1073/pnas.0405289101 CrossRefGoogle Scholar
  85. Snow JE, Dick HJB (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim Cosmochim Ac 59(20):4219–4235. doi:10.1016/0016-7037(95)00239-V CrossRefGoogle Scholar
  86. Spear FS (1993) Metamorphic phase equilibria and pressure-temperature-time paths. Mineralogical Society of America Monograph, Washington DCGoogle Scholar
  87. Swain MV, Atkinson BK (1978) Fracture surface-energy of olivine. Pure Appl Geophys 116(4–5):866–872. doi:10.1007/BF00876542 CrossRefGoogle Scholar
  88. Takahashi E (1978) Partitioning of Ni2+, Co2+, Fe2+, Mn2+ and Mg2+ between olivine and silicate melts—compositional dependence of partition-coefficient. Geochim Cosmochim Ac 42(12):1829–1844. doi:10.1016/0016-7037(78)90238-7 CrossRefGoogle Scholar
  89. Titus SJ, Fossen H, Pedersen RB, Vigneresse JL, Tikoff B (2002) Pull-apart formation and strike-slip partitioning in an obliquely divergent setting, Leka Ophiolite, Norway. Tectonophysics 354(1–2):101–119. doi:10.1016/S0040-1951(02)00293-7 CrossRefGoogle Scholar
  90. Toft PB, Arkanihamed J, Haggerty SE (1990) The effects of serpentinization on density and magnetic-susceptibility—a petrophysical model. Phys Earth Planet In 65(1–2):137–157. doi:10.1016/0031-9201(90)90082-9 CrossRefGoogle Scholar
  91. Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in Bergell Tonalite Aureole (Italy). Am J Sci 272(5):423–437. doi:10.2475/ajs.272.5.423 CrossRefGoogle Scholar
  92. Trommsdorff V, Evans BW (1974) Alpine metamorphism of peridotitic rocks. Schweiz Mineral Petrogr Mitt 54:333–354Google Scholar
  93. Viti C, Mellini M, Rumori C (2005) Exsolution and hydration of pyroxenes from partially serpentinized harzburgites. Mineral Mag 69(4):491–507. doi:10.1180/0026461056940265 CrossRefGoogle Scholar
  94. Watson EB, Baxter EF (2007) Diffusion in solid-earth systems. Earth Planet Sci Lett 253(3–4):307–327. doi:10.1016/j.epsl.2006.11.015 CrossRefGoogle Scholar
  95. Watson EB, Brenan JM (1987) Fluids in the lithosphere, 1. Experimentally-determined wetting characteristics of CO2–H2O fluids and their implications for fluid transport, host-rock physical-properties, and fluid inclusion formation. Earth Planet Sci Lett 85(4):497–515. doi:10.1016/0012-821X(87)90144-0
  96. Watson EB, Dohmen R (2010) Non-traditional and emerging methods for characterizing diffusion in minerals and mineral aggregates. In: Zhang Y, Cherniak DJ (eds) Reviews in mineralogy & geochemistry, vol 72. pp 921–970. doi:10.2138/rmg.2010.72.3
  97. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95(1):185–187. doi:10.2138/Am.2010.3371 CrossRefGoogle Scholar
  98. Wirth R (2004) Focused ion beam (FIB): a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16(6):863–876. doi:10.1127/0935-1221/2004/0016-0863 CrossRefGoogle Scholar
  99. Wirth R (2009) Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261(3–4):217–229. doi:10.1016/j.chemgeo.2008.05.019 CrossRefGoogle Scholar
  100. Wunder B, Wirth R, Gottschalk M (2001) Antigorite: pressure and temperature dependence of polysomatism and water content. Eur J Mineral 13(3):485–495. doi:10.1127/0935-1221/2001/0013-0485 CrossRefGoogle Scholar
  101. Yund RA (1997) Rates of grain boundary diffusion through enstatite and forsterite reaction rims. Contrib Mineral Petrol 126(3):224–236. doi:10.1007/s004100050246 CrossRefGoogle Scholar
  102. Yund RA, Smith BM, Tullis J (1981) Dislocation-assisted diffusion of oxygen in albite. Phys Chem Miner 7(4):185–189. doi:10.1007/BF00307264 CrossRefGoogle Scholar
  103. Zhang F, Walker AM, Wright K, Gale JD (2010) Defects and dislocations in MgO: atomic scale models of impurity segregation and fast pipe diffusion. J Mater Chem 20(46):10445–10451. doi:10.1039/C0JM01550D CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Oliver Plümper
    • 1
  • Helen E. King
    • 2
  • Christian Vollmer
    • 2
  • Quentin Ramasse
    • 3
  • Haemyeong Jung
    • 4
  • Håkon Austrheim
    • 1
  1. 1.Physics of Geological Processes (PGP)University of OsloBlindern, OsloNorway
  2. 2.Institut für MineralogieUniversity of MünsterMünsterGermany
  3. 3.SuperSTEM, Daresbury Laboratory, Keckwick Lane, DaresburyCheshireUK
  4. 4.School of Earth and Environmental SciencesSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations