Contributions to Mineralogy and Petrology

, Volume 163, Issue 4, pp 669–688 | Cite as

The beginnings of hydrous mantle wedge melting

  • Christy B. Till
  • Timothy L. Grove
  • Anthony C. Withers
Original Paper


This study presents new phase equilibrium data on primitive mantle peridotite (0.33 wt% Na2O, 0.03 wt% K2O) in the presence of excess H2O (14.5 wt% H2O) from 740 to 1,200°C at 3.2–6 GPa. Based on textural and chemical evidence, we find that the H2O-saturated peridotite solidus remains isothermal between 800 and 820°C at 3–6 GPa. We identify both quenched solute from the H2O-rich fluid phase and quenched silicate melt in supersolidus experiments. Chlorite is stable on and above the H2O-saturated solidus from 2 to 3.6 GPa, and chlorite peridotite melting experiments (containing ~6 wt% chlorite) show that melting occurs at the chlorite-out boundary over this pressure range, which is within 20°C of the H2O-saturated melting curve. Chlorite can therefore provide sufficient H2O upon breakdown to trigger dehydration melting in the mantle wedge or perpetuate ongoing H2O-saturated melting. Constraints from recent geodynamic models of hot subduction zones like Cascadia suggest that significantly more H2O is fluxed from the subducting slab near 100 km depth than can be bound in a layer of chloritized peridotite ~ 1 km thick at the base of the mantle wedge. Therefore, the dehydration of serpentinized mantle in the subducted lithosphere supplies free H2O to trigger melting at the H2O-saturated solidus in the lowermost mantle wedge. Alternatively, in cool subduction zones like the Northern Marianas, a layer of chloritized peridotite up to 1.5 km thick could contain all the H2O fluxed from the slab every million years near 100 km depth, which suggests that the dominant form of melting below arcs in cool subduction zones is chlorite dehydration melting. Slab PT paths from recent geodynamic models also allow for melts of subducted sediment, oceanic crust, and/or sediment diapirs to interact with hydrous mantle melts within the mantle wedge at intermediate to hot subduction zones.


Chlorite H2O-saturated Peridotite solidus Hydrous melting Subduction zone Mantle wedge Cascadia Marianas 



Our thanks are extended to M. Hirschmann and the UMN experimental petrology laboratory for their assistance with the multi-anvil experiments presented in this study. Many thanks also to E. Médard and M. Behn for their insights in our many discussions, N. Chatterjee for his analytical support, and R. Lange and R. Stalder for their thoughtful reviews of the paper. This work was supported by the National Science Foundation (EAR 1118598 and EAR 0538179 awarded to T. Grove and a NSF GRFP to C. Till).

Supplementary material

410_2011_692_MOESM1_ESM.xls (74 kb)
Supplementary material 1 (XLS 74.5 kb)


  1. Adam J, Green TH, Sie SH, Ryan CG (1997) Trace element partitioning between aqueous fluids, silicate melts and minerals. Eur J Mineral 9:569–584Google Scholar
  2. Armstrong JT (1995) CITZAF—a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin-films, and particles. Microbeam Anal 4:177–200Google Scholar
  3. Ayers J (1998) Trace element modeling of aqueous fluid—peridotite interaction in the mantle wedge of subduction zones. Contrib Mineral Petrol 132(4):390–404CrossRefGoogle Scholar
  4. Ayers J, Dittmer SK, Layne GD (1997) Partitioning of elements between peridotite and H2O at 2.0–3.0 GPa and 900–1100 degrees C, and application to models of subduction zone processes. Earth Planet Sci Lett 150:381–398CrossRefGoogle Scholar
  5. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58(13):2811–2827CrossRefGoogle Scholar
  6. Behn MD, Kelemen PB, Hirth G, Hacker BR, Massonne H-J (2011) Diapirs as the source of the sediment signature in arc lavas. Nat Geosci 4:1–6Google Scholar
  7. Billen MI (2008) Modeling the dynamics of subducting slabs. Annu Rev Earth Planet Sci 36(1):325–356CrossRefGoogle Scholar
  8. Boettcher AL, Wyllie PJ (1969) Phase relationships in the system NaAlSiO4-SiO2–H2O to 35 kilobars pressure. Am J Sci 267:875–909CrossRefGoogle Scholar
  9. Bowen NL, Tuttle OF (1949) The system MgO–SiO2–H2O. Bull Geol Soc Am 60:439–460CrossRefGoogle Scholar
  10. Boyd FR, England JL (1960) Apparatus for phase equilibrium studies at pressures up to 50 kilobars and temperatures up to 1750°C. J Geophys Res 65:741–748CrossRefGoogle Scholar
  11. Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: constraints on the trace element chemistry and deep crustal fluids. Geochemica Et Cosmochimica Acta 59:3331–3350CrossRefGoogle Scholar
  12. Bureau H, Keppler H (1999) Complete miscibility between silicate melts and hydrous fluids in the upper mantle: experimental evidence and geochemical implications. Earth Planet Sci Lett 165(2):187–196CrossRefGoogle Scholar
  13. Cagnioncle AM, Parmentier EM, Elkins-Tanton LT (2007) Effect of solid flow above a subducting slab on water distribution and melting at convergent plate boundaries. J Geophys Res 112:B9CrossRefGoogle Scholar
  14. Carmichael ISE (2002) The andesite aqueduct: perspectives on the evolution of intermediate magmatism in west-central (105–199 degrees W) Mexico. Contrib Mineral Petrol 143(6):641–663CrossRefGoogle Scholar
  15. Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227(1–2):73–85CrossRefGoogle Scholar
  16. Davies JH, Stevenson DJ (1992) Physical model of source region of subduction zone volcanics. J Geophys Res 97(B2):2037–2070CrossRefGoogle Scholar
  17. Deer WA, Howe RA, Zussman J (1962) Rock-forming minerals, in rock-forming minerals. Longman, Green and Co., London, p 333Google Scholar
  18. Dixon JE, Clague DA, Wallace P, Poreda R (1997) Volatiles in alkalic basalts from the North Arch Volcanic field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas. J Petrol 38:911–939CrossRefGoogle Scholar
  19. Dvir O, Pettke T, Fumagalli P, Kessel R (2011) Fluids in the peridotite–water system up to 6 GPa and 800°C: new experimental constrains on dehydration reactions. Contrib Mineral Petrol 161(6):829–844CrossRefGoogle Scholar
  20. Eggler DH (1987) Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, New York, pp 21–42Google Scholar
  21. Eggler DH, Burnham CW (1984) Solution of H2O in diopside melts—a thermodynamic model. Contrib Mineral Petrol 85(1):58–66CrossRefGoogle Scholar
  22. Enami M, Mizukami T, Yokoyama K (2004) Metamorphic evolution of garnet-bearing ultramafic rocks from the Gongen area, Sanbagawa belt, Japan. J Metamorph Geol 22(1):1–15CrossRefGoogle Scholar
  23. Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the peterogenesis of high-Ca Boninites and the influence of subduction components on mantle melting. J Petrol 41(2):257–283CrossRefGoogle Scholar
  24. Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46(3):555–578CrossRefGoogle Scholar
  25. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131(4):323–346CrossRefGoogle Scholar
  26. Gaetani GA, Grove TL (2003) Experimental constraints on melt generation in the mantle wedge. In: Eiler J (ed) Inside the subduction factory. Geophysical monograph, vol 138. American Geophysical Union, Washington, pp 107–134Google Scholar
  27. Gaetani GA, Kent AJR, Grove TL, Hutcheon ID, Stolper EM (2003) Mineral/melt partitioning of trace elements during hydrous peridotite partial melting. Contrib Mineral Petrol 145(4):391–405CrossRefGoogle Scholar
  28. Green DH (1973) Experimental melting studies on a model upper mantle composition at high-pressure under water-saturated and water-undersaturated conditions. Earth Planet Sci Lett 19(1):37–53CrossRefGoogle Scholar
  29. Green DH, Hibberson WO, Kovács I, Rosenthal A (2010) Water and its influence on the lithosphere–asthenosphere boundary. Nature 467(7314):448–451CrossRefGoogle Scholar
  30. Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145(5):515–533CrossRefGoogle Scholar
  31. Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148(5):542–565CrossRefGoogle Scholar
  32. Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249(1–2):74–89CrossRefGoogle Scholar
  33. Grove TL, Till CB, Lev E, Chatterjee N, Medard E (2009) Kinematic variables and water transport control the formation and location of arc volcanoes. Nature 459:694–697CrossRefGoogle Scholar
  34. Hack AC, Hermann J, Mavrogenes JA (2007) Mineral solubility and hydrous melting relations in the deep Earth: analysis of some binary A-H2O system pressure-temperature-composition topologies. Am J Sci 307:833–855CrossRefGoogle Scholar
  35. Hacker BR, Andersen TB, Johnston S, Kylander-Clark ARC, Peterman EM, Walsh EO, Young D (2010) High-temperature deformation during continental-margin subduction and exhumation: the ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics 480(1–4):149–171CrossRefGoogle Scholar
  36. Hart SR, Zindler A (1986) In search of a bulk-Earth composition. Chem Geol 57(3–4):247–267CrossRefGoogle Scholar
  37. Hattori KH, Wallis S, Enami M, Mizukami T (2009) Subduction of mantle wedge peridotites: evidence from the Higashi-akaishi ultramafic body in the Sanbagawa metamorphic belt. Island Arc 19:192–207CrossRefGoogle Scholar
  38. Hays JF (1966) Lime-alumina-silica: Carnegie Institution of Washington year book, pp 234–239Google Scholar
  39. Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49(4):717–740CrossRefGoogle Scholar
  40. Hill R, Boettcher A (1970) Water in the earth’s mantle: melting curves of basalt-water and basalt-water-carbon dioxide. Science 167(3920):980–982CrossRefGoogle Scholar
  41. Hodges FN (1974) The solubility of H2O in silicate melts. Carnegie Institution of Washington year book, vol 73, pp 251–255Google Scholar
  42. Holloway J (1973) The system pargasite-H2O–CO2: a model for melting of a hydrous mineral with a mixed-volatile fluid I. Experimental results to 8 kbar. Geochim Cosmochim Acta 27:651–666CrossRefGoogle Scholar
  43. Inoue T (1994) Effect of water on melting phase relations and melt composition in the system Mg2SiO4–MgSiO3–H2O up to 15 GPa. Phys Earth Planet Int 85:237–263CrossRefGoogle Scholar
  44. Iwamori H (1998) Transportation of H2O and melting in subduction zones. Earth Planet Sci Lett 160:65–80CrossRefGoogle Scholar
  45. Iwamori H (2007) Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chem Geol 239(3–4):182–198CrossRefGoogle Scholar
  46. Kawakatsu H, Watada S (2007) Seismic evidence for deep-water transportation in the mantle. Science 316(5830):1468–1471CrossRefGoogle Scholar
  47. Kawamoto T, Holloway JR (1997) Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals. Science 276(5310):240–243CrossRefGoogle Scholar
  48. Kessel R, Ulmer P, Pettke T, Schmidt MW, Thompson AB (2005) The water-basalt system at 4 to 6 GPa: phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 degrees C. Earth Planet Sci Lett 237(3–4):873–892CrossRefGoogle Scholar
  49. Kincaid C, Griffiths RW (2003) Laboratory models of the thermal evolution of the mantle during rollback subduction. Nature 425(6953):58–62CrossRefGoogle Scholar
  50. Koga KT, Shimizu N, Grove TL (1999) Disequilibrium trace element redistribution during garnet to spinel facies transformation. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th international kimberlite conference. Red Roof Design Co, Cape Town, pp 444–451Google Scholar
  51. Kushiro I (1969) The system forstertite-diopside-silica with and without water at high pressures. J Petrol 13:311–334Google Scholar
  52. Kushiro I (1972) Effect of water on the composition of magmas formed at high pressures. J Petrol 13:311–334Google Scholar
  53. Kushiro I, Yoder HSJ, Nishikawa M (1968a) Effect of water on the melting of enstatite. Geol Soc Am Bull 79:1685–1692CrossRefGoogle Scholar
  54. Kushiro I, Syono Y, Akimoto S (1968b) Melting of a peridotite nodule at high pressures and high water pressures. J Geophys Res B Solid Earth Planets 73:6023–6029CrossRefGoogle Scholar
  55. Lambert IB, Wyllie PJ (1970) Melting in the deep crust and upper mantle and the nature of the low velocity layer. Phys Earth Planet Int 3:316–322CrossRefGoogle Scholar
  56. Liu J, Bohlen S, Ernst W (1996) Stability of hydrous phases in subducting oceanic crust. Earth Planet Sci Lett 143:161–171CrossRefGoogle Scholar
  57. Longhi J (2005) Temporal stability and pressure calibration of barium carbonate and talc/pyrex pressure media in a piston-cylinder apparatus. Am Mineral 90:206–218CrossRefGoogle Scholar
  58. Luth RW (2006) Experimental study of the CaMgSi2O6–CO2 system at 3–8 GPa. Contrib Mineral Petrol 151:141–157CrossRefGoogle Scholar
  59. Manning CE (2007) Solubility of corundum + kyanite in H2O at 700°C and 10 kbar: evidence for Al–Si complexing at high pressure and temperature. Geofluids 7:258–269CrossRefGoogle Scholar
  60. Medard E, Grove TL (2006) Early hydrous melting and degassing of the Martian interior. J Geophys Res 111:E11003. doi: 10.1029/2006JE002742 CrossRefGoogle Scholar
  61. Medard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844CrossRefGoogle Scholar
  62. Medaris LM (1984) A geothermobarometric investigation of garnet peridotites in the Western Gneiss Region of Norway. Contrib Mineral Petrol 87:72–86CrossRefGoogle Scholar
  63. Mengel K, Green DH (1989) Stability of amphibole and phlogopite in metasomatized peridotite under water-saturated and water-undersaturated conditions. In: Kimberlites and related rocks—their occurrence, origin and emplacement. Blackwell, Australia, pp 571–581Google Scholar
  64. Mibe K, Kanzaki M, Kawamoto T, Matsukage KN, Fei Y, Ono S (2007) Second critical endpoint in the peridotite-H2O system. J Geophys Res 112, Art no: B03201. doi: 10.1029/2005JB004125
  65. Millhollen GL, Irving AJ, Wyllie PJ (1974) Melting interval of peridotite with 5.7 per cent water to 30 Kilobars. J Geol 82(5):575–587CrossRefGoogle Scholar
  66. Mysen BO, Boettcher AL (1975) Melting of a hydrous mantle 1. Phase relations of natural peridotite at high-pressures and temperatures with controlled activities of water, carbon-dioxide, and hydrogen. J Petrol 16(3):520–548Google Scholar
  67. Nakamura Y, Kushiro I (1974) Compositions of the gas phase in Mg2SiO4-SiO2-H2O at 15 kbar. Carnegie Institution of Washington Year Book, vol 73, pp 255–258Google Scholar
  68. Newton RC, Manning CE (2002) Solubility of enstatite + forsterite in H2O at deep crust/upper mantle conditions: 4 to 15 kbar and 700 to 900°C. Geochim Cosmochim Acta 66(23):4165–4176CrossRefGoogle Scholar
  69. Nichols GT, Wyllie PJ, Stern CR (1994) Subduction zone melting of pelagic sediments constrained by melting experiments. Nature 371:785–788CrossRefGoogle Scholar
  70. Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40CrossRefGoogle Scholar
  71. Pawley A (2003) Chlorite stability in mantle peridotite: the reaction clinochlore plus enstatite = forsterite + pyrope + H2O. Contrib Mineral Petrol 144(4):449–456CrossRefGoogle Scholar
  72. Peacock S, van Keken PE, Holloway SD, Hacker BR, Abers GA, Fergason RL (2005) Thermal structure of the Costa Rica—Nicaragua subduction zone. Phys Earth Planet Int 149(1–2):187–200CrossRefGoogle Scholar
  73. Pichavant M, MacDonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol 154(5):535–558CrossRefGoogle Scholar
  74. Pineau F, Shilobreeva S, Hekinian R, Bidiau D, Javoy M (2004) Deep-sea explosive activity on the Mid-Atlantic Ridge near 34°50’N: a stable isotope (C, H, O) study. Chem Geol 118:43–64Google Scholar
  75. Poli S, Schmidt MW (2002) Petrology of subducted slabs. Annu Rev Earth Planet Sci 30:207–235CrossRefGoogle Scholar
  76. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean ridge basalt and the volatile content of the Earth’s upper mantle. Nature 419:451–455CrossRefGoogle Scholar
  77. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163(1–4):361–379CrossRefGoogle Scholar
  78. Schmidt MW, Ulmer P (2004) A rocking multianvil: elimination of chemical segregation in fluid-saturated high-pressure experiments. Geochemica Et Cosmochimica Acta 68(8):1889–1899CrossRefGoogle Scholar
  79. Sisson TW, Grove TL (1993a) Experimental investigations of the role of H2O in Calc-Alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113(2):143–166CrossRefGoogle Scholar
  80. Sisson TW, Grove TL (1993b) Temperatures and H2O contents of low-MgO high-alumina basalts. Contrib Mineral Petrol 113(2):167–184CrossRefGoogle Scholar
  81. Smith D (1979) Hydrous minerals and carbonates in peridotite inclusions from the Green Knobs and Buell Park kimberlitic diatremes on the Colorado Plateau. In: Boyd FR, Meyer HOA (eds) The mantle sample: inclusions in kimberlites and other volcanics, proceedings international kimberlite conference, pp 309–317Google Scholar
  82. Stalder R, Ulmer P (2001) Phase relations of a serpentine composition between 5 and 14 GPa: significance of clinohumite and phase E as water carriers into the transition zone. Contrib Mineral Petrol 140:670–679CrossRefGoogle Scholar
  83. Stalder R, Foley SF, Brey GP, Horn I (1998) Mineral-aqueous fluid partitioning of trace element at 900–1200°C and 3.0–5.7 GPa: new experimental data for garnet, clinopyroxene, and rutile, and implications for mantle metasomatism. Geochemica Et Cosmochimica Acta 62:1781–1801CrossRefGoogle Scholar
  84. Stalder R, Ulmer P, Thompson AB, Gunther D (2000) Experimental approach to constrain second critical end points in fluid/silicate systems: near-solidus fluids and melts in the system albite-H2O. Am Mineral 85(1):68–77Google Scholar
  85. Stalder R, Ulmer P, Thompson AB, Gunther D (2001) High pressure fluids in the system MgO–SiO2–H2O under upper mantle conditions. Contrib Mineral Petrol 140:607–618CrossRefGoogle Scholar
  86. Stern CR, Saul S, Skewes MA, Futa K (1989) Garnet peridotite xenoliths from the Pali-Aike alkali basalts of southernmost South Africa. In: Ross J (ed) 4th International kimberlite conference 2. GSA Special Publications, Perth, Australia, pp 735–744Google Scholar
  87. Syracuse EM, van Keken PE, Abers GA (2010) The global range of subduction zone thermal models. Phys Earth Planet Int 183:73–90CrossRefGoogle Scholar
  88. Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas—evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res 29(1–4):293–309CrossRefGoogle Scholar
  89. Trull T, Nadeau S, Pineau F, Polve M, Javoy M (1993) C-He systematics in hotspot xenoliths: implications for mantle carbon contents and carbon recycling. Earth Planet Sci Lett 118:43–64CrossRefGoogle Scholar
  90. Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268(5212):858–861CrossRefGoogle Scholar
  91. Van Baalen MR (2004) Migration of the Mendocino Triple Junction and the Origin of Titanium-Rick Mineral Suites at New Idria, California. In: Ernst WG (ed. Serpentine and Serpentinites. Mineralogy, petrology, geochemistry, ecology, geophysics and tectonics, Geological Society of America, Boulder, CO, pp 54–75Google Scholar
  92. van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosys 3(10), 1056. doi:  10.1029/2001GC000256
  93. van Keken PE, Currie CA, King SD, Behn MD, Cagnioncle AM, He J, Katz RF, Lin S-C, Parmentier EM, Speigelman M, Wang K (2008) A community benchmark for subduction zone modeling. Phys Earth Planet Int 171:187–197CrossRefGoogle Scholar
  94. van Keken PE, Hacker BR, Syracuse EM, Abers GA (2011) Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J Geophys Res 116, Art no: B01401. doi: 10.1029/2010JB007922
  95. Vielzeuf D, Schmidt M (2001) Melting relations in hydrous systems revisited: application to metapelites, metagreywackes and metabasalts. Contrib Mineral Petrol 141(3):251–267CrossRefGoogle Scholar
  96. Wada I, Wang K (2009) Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochem Geophys Geosys 10(10). doi:  10.1029/2009GC002570
  97. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240CrossRefGoogle Scholar
  98. Walter MJ (1998) Melting of garnet peridotite and the origin of Komatiite and depleted lithosphere. J Petrol 39(1):29–60CrossRefGoogle Scholar
  99. Watson EB, Wark DA, Price JD, Van Orman JA (2002) Mapping the thermal structure of solid-media pressure assemblies. Contrib Mineral Petrol 142(6):640–652CrossRefGoogle Scholar
  100. Wendlandt RF, Eggler DH (1980) The origins of potassic magmas: 2. stability of phlogopite in natural spinel Lherzolite and in the system KAlSiO4–MgO–SiO2–H2O– CO2 at high-pressures and high-temperatures. Am J Sci 280(5):421–458CrossRefGoogle Scholar
  101. Withers AC, Hirschmann MM, Tenner TJ (2011) The effect of Fe on olivine H2O storage capacity: consequences for H2O in the Martian mantle. Am Mineral 96:1039–1053Google Scholar
  102. Wyllie PJ (1978) Mantle fluid compositions buffered in peridotite-CO2–H2O by carbonates, amphibole and phlogopite. J Geol 86(6):687–713CrossRefGoogle Scholar
  103. Yoder H, Kushiro I (1969) Melting of a hydrous phase: phlogopite. Am J Sci 267:558–582Google Scholar
  104. Zhang Y, Frantz J (2000) Enstatite-forsterite-water equilibria at elevated temperatures and pressures. Am Mineral 85:918–925Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Christy B. Till
    • 1
  • Timothy L. Grove
    • 1
  • Anthony C. Withers
    • 2
  1. 1.Department of Earth, Atmospheric and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Geology and GeophysicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations