Contributions to Mineralogy and Petrology

, Volume 163, Issue 4, pp 611–629 | Cite as

Petrogenesis of the Kaikomagatake granitoid pluton in the Izu Collision Zone, central Japan: implications for transformation of juvenile oceanic arc into mature continental crust

  • Satoshi SaitoEmail author
  • Makoto Arima
  • Takashi Nakajima
  • Kenichiro Tani
  • Takashi Miyazaki
  • Ryoko Senda
  • Qing Chang
  • Toshiro Takahashi
  • Yuka Hirahara
  • Jun-Ichi Kimura
Original Paper


The Miocene Kaikomagatake pluton is one of the Neogene granitoid plutons exposed in the Izu Collision Zone, which is where the juvenile Izu-Bonin oceanic arc is colliding against the mature Honshu arc. The pluton intrudes into the Cretaceous to Paleogene Shimanto accretionary complex of the Honshu arc along the Itoigawa-Shizuoka Tectonic Line, which is the collisional boundary between the two arcs. The pluton consists of hornblende–biotite granodiorite and biotite monzogranite, and has SiO2 contents of 68–75 wt%. It has high-K series compositions, and its incompatible element abundances are comparable to the average upper continental crust. Major and trace element compositions of the pluton show well-defined chemical trends. The trends can be interpreted with a crystal fractionation model involving the removal of plagioclase, biotite, hornblende, quartz, apatite, and zircon from a potential parent magma with a composition of ~68 wt% SiO2. The Sr isotopic compositions, together with the partial melting modeling results, suggest that the parent magma is derived by ~53% melting of a hybrid lower crustal source comprising ~30% Shimanto metasedimentary rocks of the Honshu arc and ~70% K-enriched basaltic rocks of the Izu-Bonin rear-arc region. Together with previous studies on the Izu Collision Zone granitoid plutons, the results of this study suggest that the chemical diversity within the parental magmas of the granitoid plutons reflects the chemical variation of basaltic sources (i.e., across-arc chemical variation in the Izu-Bonin arc), as well as a variable contribution of the metasedimentary component in the lower crustal source regions. In addition, the petrogenetic models of the Izu Collision Zone granitoid plutons collectively suggest that the contribution of the metasedimentary component is required to produce granitoid magma with compositions comparable to the average upper continental crust. The Izu Collision Zone plutons provide an exceptional example of the transformation of a juvenile oceanic arc into mature continental crust.


Kaikomagatake pluton Granitoid Izu Collision Zone Arc–arc collision Izu-Bonin arc Across-arc chemical variation Juvenile oceanic arc Continental crust 



We thank Timothy L. Grove for editorial handling. We also thank two anonymous reviewers for their thoughtful and constructive reviews of an earlier version of this manuscript. We are also grateful to Y. Motoyoshi, K. Shiraishi, and K. Seno for their analytical support. S.S. thanks T. Kanamaru, H. Kamiyama, and S. Atsuta for discussions during field excursions in the Kaikomagatake pluton. We are grateful to F.J. Korhonen and A.R.L. Nichols for helping to improve the English and various comments. This study was partly supported by a Sasakawa Scientific Research Grant from the Japan Science Society (14–305) to S.S. and the Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (12440147, 13373005) to M.A.

Supplementary material

410_2011_689_MOESM1_ESM.xls (48 kb)
Supplementary material 1 (XLS 47 kb)
410_2011_689_MOESM2_ESM.xls (28 kb)
Supplementary material 2 (XLS 28 kb)
410_2011_689_MOESM3_ESM.xls (30 kb)
Supplementary material 3 (XLS 30 kb)
410_2011_689_MOESM4_ESM.xls (30 kb)
Supplementary material 4 (XLS 30 kb)
410_2011_689_MOESM5_ESM.tif (2.4 mb)
Representative microstructures in the Kaikomagatake pluton. Qtz; quartz, Pl; plagioclase, Kfs; K-feldspar, Hbl; hornblende, Bt; biotite. a Equigranular texture of undeformed rock. Cross-polarized light. b Deformed K-feldspar. The fracture in K-feldspar is filled with quartz and hornblende. Cross-polarized light. c Deformed quartz and biotite. Cross-polarized light (TIFF 2,459 kb)
410_2011_689_MOESM6_ESM.tif (2.1 mb)
Calculated weight proportions of fractionated crystal phases and residual melt in the fractional crystallization modeling (TIFF 2,179 kb)
410_2011_689_MOESM7_ESM.tif (2.8 mb)
SiO2 vs K2O/Na2O diagram showing experimental melt (shaded area) and starting material compositions of Nakajima and Arima (1998) and Sisson et al. (2005). The compositional fields of volcanic rocks (SiO2 < 61 wt%) from the Izu-Bonin arc volcanic front region (Taylor and Nesbitt 1998; Hochstaedter et al. 2000) and rear-arc region (Hochstaedter et al. 2000; Machida and Ishii 2003) are shown for comparison. The parent magma compositions of the Kaikomagatake pluton and the Tanzawa plutonic complex (Kawate and Arima 1998) are also shown (TIFF 2,896 kb)


  1. Amano K (1991) Multiple collision tectonics of the South Fossa Magna in central Japan. Modern Geol 15:315–329Google Scholar
  2. Aoike K (1999) Tectonic evolution of the Izu collision zone (in Japanese with English abstract). Res Rep Kanagawa Prefect Mus Nat Hist 9:111–151Google Scholar
  3. Arculus RJ, Gill JB, Cambray H, Chen W, Stern RJ (1995) Geochemical evolution of arc systems in the western Pacific: the ash and turbidite record recovered by drilling. In: Taylor B, Natland J (eds) Active margins and marginal basins of the Western Pacific. Geophys Monogr Ser 88:78–101Google Scholar
  4. Asano S, Wada K, Yoshii T, Hayakawa M, Misawa Y, Moriya T, Kanazawa T, Marukami H, Suzuki F, Kubota R, Suyehiro K (1985) Crustal structure in the northern part of the Philippine Sea plate as derived from seismic observations of Hatoyama-Off Izu Peninsula explosions. J Phys Earth 33:173–189CrossRefGoogle Scholar
  5. Barker F (1979) Trondhjemite: definition, environment and hypotheses of origin. In: Barker F (ed) Trondhjemites, dacites and related rocksdacites and related rocks. Elsevier, Amsterdam, pp 1–12Google Scholar
  6. Borodin LS (1998) Estimated chemical composition and petrochemical evolution of the upper continental crust. Geochem Int 37(8):723–734Google Scholar
  7. Cambray H, Pubellier M, Jolivet L, Pouclet A (1995) Volcanic activity recorded in deep-sea sediments and the geodynamic evolution of western Pacific island arcs. In: Taylor B, Natland J (eds) Active margins and marginal basins of the Western Pacific. Geophys Monogr Ser 88:97–124Google Scholar
  8. Castro A (2001) Plagioclase morphologies in assimilation experiments. Implications for disequilibrium melting in the generation of granodiorite rocks. Miner Petrol 71:31–49CrossRefGoogle Scholar
  9. Clements JD (2006) Melting of the continental crust: fluid regimes, melting reactions, and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, New York, pp 296–327Google Scholar
  10. Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37CrossRefGoogle Scholar
  11. Davidson JP, Arculus RJ (2006) The significance of Phanerozoic arc magmatism in generating continental crust. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, New York, pp 135–172Google Scholar
  12. Fujimoto U, Ichiki K, Kamei T, Katsurada T, Kawachi Y, Miyazaki H, Ozawa S, Sato Y, Tokuoka T, Yamada T (1965) On the granitic rocks and the Itoigawa-Shizuoka Tectonic Line of the Northern Akaishi Massif -Geology of the Northern Akaishi Massif, Part 2- (in Japanese with English abstract). Chikyukagaku (Earth Sci) 76:15–24Google Scholar
  13. Gao S, Luo T-C, Zhang B-R, Zhang H-F, Han Y-W, Hy Y-K, Zhao Z-D (1998) Chemical composition of the continental crust as revealed by studies in east China. Geochim Cosmochim Acta 62:1959–1975CrossRefGoogle Scholar
  14. Gill JB (1981) Orogenic andesites and plate tectonics. Springer, New York, p 390CrossRefGoogle Scholar
  15. Haraguchi S, Ishii T, Kimura J-I, Ohara Y (2003) Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contrb Mineral Petrol 143:151–168CrossRefGoogle Scholar
  16. Hirahara Y, Takahashi T, Miyazaki T, Vaglarov BS, Chang Q, Kimura J-I, Tatsumi Y (2009) Precise Nd isotope analysis of igneous rocks using cation exchange chromatography and thermal ionization mass spectrometry (TIMS). JAMSTEC Rep Res Dev Spec Issue 73–80Google Scholar
  17. Hochstaedter AG, Gill JB, Taylor B, Ishizuka O, Yuasa M, Morita S (2000) Across-arc geochemical trends in the Izu-Bonin arc: constraints on source composition and mantle melting. J Geophy Res 105:495–512CrossRefGoogle Scholar
  18. Hochstaedter AG, Gill J, Peters R, Broughton P, Holden P (2001) Across-arc geochemical trends on the Izu-Bonin arc: contributions from the subducting slab. Geochem Geophys Geosyst 2:2000GC000105Google Scholar
  19. Ishizuka O, Yuasa M, Uto K (2002) Evidence of porphyry copper-type hydrothermal activity from a submerged remnant back-arc volcano of the Izu–Bonin arcimplications for the volcanotectonic history of back-arc seamounts. Earth Planet Sci Lett 198:381–399CrossRefGoogle Scholar
  20. Ishizuka O, Taylor RN, Milton JA, Nesbitt RW (2003a) Fluid-mantle interaction in an intra-oceanic arc: constraints from high-precision Pb isotopes. Earth Planet Sci Lett 211:221–236CrossRefGoogle Scholar
  21. Ishizuka O, Uto K, Yuasa M (2003b) Volcanic history of the back-arc region of the Izu-Bonin (Ogasawara) arc. In: Larter RD, Leat PH (eds) Intra-oceanic subduction systems: tectonic and magmatic processes. Geol Soc Lond Spec Pub 219:187–205Google Scholar
  22. Ishizuka O, Taylor RN, Milton JA, Nesbitt RW, Yuasa M, Sakamoto I (2006) Variation in the source mantle of the Northern Izu arc with time and space: constraints from high-precision Pb Isotopes. J Volc Geotherm Res 156:266–290CrossRefGoogle Scholar
  23. Itoh H, Sorkhabi RB, Tagami T, Nishimura S (1989) Tectonic history of granitic bodies in the South Fossa Magna region, central Japan: new evidence from fission-track analysis of zircon. Tectonophysics 166:331–344CrossRefGoogle Scholar
  24. Kawano Y, Ueda Y (1966) K-Ar dating on the igneous rocks in Japan (IV) -Granitic rocks in the northeastern Japan (in Japanese). J Jpn Assoc Mineral Petrol Econ Geol 56:191–211CrossRefGoogle Scholar
  25. Kawate S, Arima M (1998) Tanzawa plutonic complex, central Japan: exposed felsic middle crust of Izu-Bonin-Mariana arc. Island Arc 7:342–358CrossRefGoogle Scholar
  26. Kimura J-I, Yoshida T, Iizumi S (2002) Origin of low-K intermediate lavas at Nekoma volcano, NE Honshu Arc, Japan: geochemical constraints for lower crustal melts. J Petrol 45:631–661CrossRefGoogle Scholar
  27. Kimura J-I, Adam JRK, Rowe M, Nakano N, Katakuse M, van Keken P, Hacker B, Stern RJ (2010) Origin of cross-chain geochemical variation in Quaternary lavas from northern Izu arc: a quantitative mass balance approach on source identification and mantle wedge processes. Geochem Geophys Geosyst 11. doi: 10.1029/2010GC003050
  28. Kitamura K, Ishikawa M, Arima M (2003) Petrological model of the northern Izu-Bonin-Mariana arc crust: constraints from high-pressure measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophysics 371:213–221CrossRefGoogle Scholar
  29. Kobayashi K, Kasuga S, Okino K (1995) Shikoku basin and its margins. In: Taylor B (ed) Backarc basins: tectonics and magmatism. Plenum Press, New York, pp 381–405Google Scholar
  30. Kodaira S, Sato T, Takahashi N, Ito A, Tamura Y, Tatsumi Y, Kaneda Y (2007) Seismological evidence for variable growth of crust along the Izu intra-oceanic arc. J Geophy Res 112:B05104. doi: 10.1029/2006JB004593 CrossRefGoogle Scholar
  31. Machida S, Ishii T (2003) Backarc volcanism along the en echelon seamounts: the Enpo seamount chain in the northern Izu-Ogasawara arc. Geochem Geophys Geosyst 4. doi: 10.1029/2003GC000554
  32. McDonough WF, Sun S–S, Ringwood AE, Jagoutz E, Hofmann AW (1992) Potassium, rubidium, and cesium in the earth and moon and the evolution of the mantle of the earth. Geochim Cosmochim Acta 56:1001–1012CrossRefGoogle Scholar
  33. Motoyoshi Y, Shiraishi K (1995) Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: (1) Major elements (in Japanese with English abstract). Nankyoku Shiryo (Antarct Rec) 39:40–48Google Scholar
  34. Motoyoshi Y, Ishizuka H, Shiraishi K (1996) Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: (2) Trace elements (in Japanese with English abstract). Nankyoku Shiryo (Antarct Rec) 40:53–63Google Scholar
  35. Nakajima K, Arima M (1998) Melting experiments on hydrous low-K tholeiite: implications for the genesis of tonalitic crust in the Izu-Bonin-Mariana arc. Island Arc 7:359–373CrossRefGoogle Scholar
  36. Niitsuma N (1989) Collision tectonics in the South Fossa magna, central Japan. Modern Geol 14:3–18Google Scholar
  37. Ogawa Y, Seno T, Tokuyama H, Akiyoshi H, Fujioka K, Taniguchi H (1989) Structure and development of the Sagami trough and the Boso triple junction. Tectonophysics 160:135–150CrossRefGoogle Scholar
  38. Okino K, Ohara Y, Kasuga S, Kato Y (1999) The Philippine Sea: new survey results reveal the structure and the history of the marginal basins. Geophys Res Lett 26:2287–2290CrossRefGoogle Scholar
  39. Otofuji Y, Kambara A, Matsuda T, Nohda S (1994) Counterclockwise rotation of Northeast Japan: paleomagnetic evidence for regional extent and timing of rotation. Earth Planet Sci Lett 121:503–518CrossRefGoogle Scholar
  40. Otsuka Y (1940) Geology of Mt. Jizo and Hoo, Yamanashi Prefecture, Japan (in Japanese with English abstract). Tokyo Univ Earthquake Res Inst Bull 19:115–143Google Scholar
  41. Pearce JA, Parkinson IJ (1993) Trace element models for mantle melting: application to volcanic arc petrogenesis. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geol Soc Lon Spec Publ 76:373–403Google Scholar
  42. Roser BP, Kimura J-I, Hisatomi K (2000) Whole-rock elemental abundances in sandstones and mudrocks from the Tanabe Group, Kii Peninsula, Japan. Sci Rep Shimane Univ 19:101–112Google Scholar
  43. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (eds) The crust, treatise on geochemistry. Elsevier-Pergamon, Oxford 3:1–64Google Scholar
  44. Saito S, Arima M, Nakajima T, Kimura J-I (2004) Petrogenesis of Ashigawa and Tonogi granitic intrusions, southern part of the Miocene Kofu Granitic Complex, central Japan: M-type granite in the Izu arc collision zone. J Mineral Petrol Sci 99:104–117CrossRefGoogle Scholar
  45. Saito S, Arima M, Nakajima T (2007a) Hybridization of a shallow ‘I-type’ granitoid pluton and its host migmatite by magma-chamber wall collapse: the Tokuwa pluton, central Japan. J Petrol 48:79–111CrossRefGoogle Scholar
  46. Saito S, Arima M, Nakajima T, Misawa K, Kimura J-I (2007b) Formation of distinct granitic magma batches by partial melting of hybrid lower crust in the Izu arc collision zone, central Japan. J Petrol 48:1761–1791CrossRefGoogle Scholar
  47. Sakamoto I, Hirata D, Fujioka K (1999) Description of basement rocks from the Izu-Ogasawara Arc. Res Rep Kanagawa Prefect Mus Nat Hist 3:21–39 (in Japanese with English abstract)Google Scholar
  48. Sato K (1991) Miocene granitoid magmatism at the island-arc junction, central Japan. Modern Geol 15:367–399Google Scholar
  49. Sato K, Shibata K, Uchiumi S (1989) K-Ar ages and cooling history of the Kaikomagatake granitoid pluton, and their bearing on tectonic evolution of the Akaishi Mountains, central Japan (in Japanese with English abstract). J Geol Soc Japan 95:33–44CrossRefGoogle Scholar
  50. Shibata H, Kobayashi F (1965) Geology of the Hayakawa-Kamanashigawa Region, Yamanashi Prefecture, Japan (in Japanese with English abstract). J Geol Soc Japan 71:66–75CrossRefGoogle Scholar
  51. Shimamoto T, Kanaori Y, Asai K-I (1991) Cathodoluminescence observations on low-temperature mylonites: potential for detection of solution-precipitation microstructures. J Struct Geol 13:967–973CrossRefGoogle Scholar
  52. Shimizu M (1986) The Tokuwa batholith, central Japan: an example of ilmenite-series and magnetite-series granitoids in a batholith. Univ Mu Univ Tokyo Bull 28:1–145Google Scholar
  53. Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661CrossRefGoogle Scholar
  54. Soh W, Pickering KT, Taira A, Tokuyama H (1991) Basin evolution in the arc–arc Izu Collision Zone, Mio-Pliocene Miura Group, central Japan. J Geol Soc Lond 148:317–330CrossRefGoogle Scholar
  55. Soh W, Nakayama K, Kimura T (1998) Arc-arc collision in the Izu collision zone, central Japan, deduced from the Ashigara Basin and adjacent Tanzawa Mountains. Island Arc 7:330–341CrossRefGoogle Scholar
  56. Stern RJ, Fouch MJ, Klemperer S (2003) An overview of the Izu-Bonin-Mariana subduction factory. In: Eiler J (eds) Inside the subduction factory. Geophys Monogr Ser 138:175–222Google Scholar
  57. Sun S–S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: magmatism in the ocean basins. Geol Soc Lon Spec Publ 42:313–345CrossRefGoogle Scholar
  58. Suyehiro K, Takahashi N, Ariie Y, Yokoi Y, Hino R, Shinohara M, Kanazawa T, Hirata N, Tokuyama H, Taira A (1996) Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc. Science 272:390–392CrossRefGoogle Scholar
  59. Taira A, Tokuyama H, Soh W (1989) Accretion tectonics and evolution of Japan. In: Ben-Avraham Z (ed) The evolution of the Pacific ocean margins. Oxford University Press, New York, pp 100–123Google Scholar
  60. Taira A, Saito S, Aoike K, Morita S, Tokuyama H, Suyehiro K, Takahashi N, Shinohara M, Kiyokawa S, Naka J, Klaus A (1998) Nature and growth rate of the Northern Izu-Bonin (Ogasawara) arc crust and their implications for continental crust formation. Island Arc 7:395–407CrossRefGoogle Scholar
  61. Takahashi M (1989) Neogene granitic magmatism in the South Fossa Magna collision zone, central Japan. Modern Geol 14:127–143Google Scholar
  62. Takahashi M, Saito K (1997) Miocene intra-arc bending at an arc–arc collision zone, central Japan. Island Arc 6:168–182CrossRefGoogle Scholar
  63. Takahashi T, Hirahara Y, Miyazaki T, Vaglarov BS, Chang Q, Kimura J-I, Tatsumi Y (2009) Precise determination of Sr isotope ratios in igneous rock samples and application to micro-analysis of plagioclase phenocrysts. JAMSTEC Rep Res Dev Spec Issue 59–64Google Scholar
  64. Tamura J, Kaneko T, Niitsuma N (1984) Geology of the southern part of the Koma Mountains, western part of Yamanashi Prefecture, central Japan (in Japanese with English abstract). Geosci Repts Shizuoka Univ 10:23–53Google Scholar
  65. Tamura Y, Gill JB, Tollstrup D, Kawabata H, Shukuno H, Chang Q, Miyazaki T, Takahashi T, Hirahara Y, Kodaira S, Ishizuka O, Suzuki T, Kido Y, Fiske RS, Tatsumi T (2009) Silicic magmas in the Izu-Bonin oceanic arc and implications for crustal evolution. J Petrol 50:685–723CrossRefGoogle Scholar
  66. Tani K (2011) Crustal development of intra-oceanic arc and arc–arc collision zone: geochronological and geochemical study of Izu-Bonin arc and Izu collision zone. PhD Thesis, Yokohama National University, JapanGoogle Scholar
  67. Tani K, Dunkley DJ, Kimura J-I, Wysoczanski RJ, Yamada K, Tatsumi Y (2010) Syn-collisional rapid granitic magma formation in an arc–arc collision zone: evidence from the Tanzawa plutonic complex, Japan. Geol 38:215–218. doi: 10.1130/G30526 CrossRefGoogle Scholar
  68. Taylor B (1992) Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana arc. In: Taylor B, Fujioka K et al. (eds) Proceedings of the Ocean Drilling Program. ODP Sci Res 126:627–651Google Scholar
  69. Taylor RN, Nesbitt RW (1998) Isotope characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin Arc, Japan. Earth Planet Sci Lett 164:79–98CrossRefGoogle Scholar
  70. Tsunoda K, Nishido H, Shimizu M (1992) K-Ar ages of mineralization associated with granitic rocks around the Kofu basin, Yamanashi Prefecture, central Japan (in Japanese with English abstract). Min Geol 42:147–153Google Scholar
  71. Wedepohl H (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239CrossRefGoogle Scholar
  72. Yamada T, Watanabe T, Kawachi Y, Yuasa M, Sekine M, Matsuura K, Ogawa K, Yokota Y, Kwanke E, Kinoshita F, Demachi M (1983) Geology of the Shimanto Belt of the northern Akaishi Mountains, central Japan (in Japanese with English abstract). Ear Sci J Assoc Geol Col Japan 37:15–24Google Scholar
  73. Yuasa M (1976) Contact metamorphic aureole around the Kaikoma-Hoo granodiorite pluton in the northern part of Akaishi Mountains, central Japan. J Japan Assoc Min Petrol Econ Geol 71:157–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Satoshi Saito
    • 1
    • 4
    Email author
  • Makoto Arima
    • 2
  • Takashi Nakajima
    • 3
  • Kenichiro Tani
    • 1
  • Takashi Miyazaki
    • 1
  • Ryoko Senda
    • 1
  • Qing Chang
    • 1
  • Toshiro Takahashi
    • 1
  • Yuka Hirahara
    • 1
  • Jun-Ichi Kimura
    • 1
  1. 1.Institute for Research on Earth EvolutionJapan Agency for Marine-Earth Science and TechnologyYokosuka, KanagawaJapan
  2. 2.Geological Institute, Graduate School of Environment and Information SciencesYokohama National UniversityHodogaya-ku, YokohamaJapan
  3. 3.Geological MuseumGeological Survey of JapanTsukubaJapan
  4. 4.Research Institute for Humanity and NatureKita-ku, KyotoJapan

Personalised recommendations