Contributions to Mineralogy and Petrology

, Volume 163, Issue 4, pp 591–609 | Cite as

Experimental determination of F and Cl partitioning between lherzolite and basaltic melt

  • Célia DalouEmail author
  • Kenneth T. Koga
  • Nobumichi Shimizu
  • Julien Boulon
  • Jean-Luc Devidal
Original Paper


We experimentally determined F and Cl partition coefficients together with that of 19 trace elements (including REE, U-Th, HFSE and LILE) between basaltic melt and lherzolite minerals: olivine, orthopyroxene, clinopyroxene, plagioclase and garnet. Under conditions from 8 to 25 kbars and from 1,265 to 1,430°C, compatibilities of F and Cl are globally ordered as D Cpx/melt > D Opx/melt > D Grt/melt > D Ol/melt > D Plag/melt, and D F mineral/melt is larger than D Cl mineral/melt . Four other major results were brought to light. (1) Chlorine partition coefficients positively correlate with the jadeite component in orthopyroxene, and increase of the CaTs component promotes Cl incorporation in clinopyroxene. (2) Variations of fluorine partition coefficients correlate strongly with melt viscosity. (3) F and Cl partition coefficients correlate with the Young’s modulus (E 0) of pyroxene octahedral sites (M sites) and with Raman vibrational modes of pyroxenes. This demonstrates a fundamental interaction between the M site of pyroxenes and the incorporation of F and Cl. (4) We also determined the parameters of the lattice-strain model applied to 3+ cation trace elements for the two M sites in orthopyroxene and clinopyroxene: D 0 M 1, D 0 M 2, r 0 M1 r 0 M2 E 0 M1 and E 0 M2 .


Fluorine Chlorine Partition coefficients Lherzolite minerals Basaltic melt Substitution Lattice-strain model 



The authors would like to thank P. Wallace and an anonymous reviewer for their thoughtful and critical comments that significantly improved the manuscript, and T. L. Grove for editorial handling. We are also grateful to E. Médard, E. Rose-Koga and M. LeVoyer for helpful discussion on this study. We thank S. Lambart and F. Pointud for their help during piston-cylinder experiments. We also thank N. Chatterjee and B. Boyer for their help on the electron microprobe and the SIMS, respectively. CD thanks R. Dennen and E. Rose-Koga for their assistance with English revisions. CD and KK thank D. Andrault for his support on this thesis research. This project was financed by the Agence Nationale de la Recherche of France (grant no. ANR-NT09-454454), and by French CNRS Institut National des Sciences de l’Univers (SEDIT 2008).

Supplementary material

410_2011_688_MOESM1_ESM.pdf (333 kb)
PDF (332 KB)


  1. Albarède F, Provost A (1977) Petrological and geochemical mass-balance equations: an algorithm for least-square fitting and general error analysis. Comput Geosci 3(2):309–326CrossRefGoogle Scholar
  2. Alletti M, Baker DR, Freda C (2007) Halogen diffusion in a basaltic melt. Geochim Cosmochim Acta 71(14):3570–3580CrossRefGoogle Scholar
  3. Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of sr and ba between plagioclase feldspar, silicate melt and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209CrossRefGoogle Scholar
  4. Blundy JD, Wood BJ (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454CrossRefGoogle Scholar
  5. Blundy JD, Wood BJ (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210(3–4):383–397CrossRefGoogle Scholar
  6. Bourgue E, Richet P (2001) The effects of dissolved CO2 on the density and viscosity of silicate melts: a preliminary study. Earth Planet Sci Lett 218:31–44Google Scholar
  7. Brice JC (1975) Some thermondynamic aspects of strained crystals. J Cryst Growth 28:249–253CrossRefGoogle Scholar
  8. Bromiley DW, Kohn SC (2007) Comparisons between fluoride and hydroxide incorporation in nominally anhydrous and fluorine-free mantle minerals. In: Goldschmidt conference abstractsGoogle Scholar
  9. Cameron M, Papike JJ (1981) Structural and chemical variations in pyroxenes. Am Mineral 66:1–50Google Scholar
  10. Canil D, Fedortchouk Y (2001) Olivine-liquid partitioning of vanadium and other trace elements with applications to modern and ancient picrites. Can Mineral 39:319–330CrossRefGoogle Scholar
  11. Carroll MR, Webster JD (1994) Solubilities of sulfur, nobles gases, nitrogen, chlorine and fluorine in magmas. Rev Mineral Geochem 30(1):231–279Google Scholar
  12. Cashman KV (2004) Volatile controls on magma ascent and eruption. Geophys Monogr 150(109–124)Google Scholar
  13. Dalou C, Koga KT, Hammouda T, Poitrasson F (2009) Trace element partitioning between carbonatitic melts and mantle transition zone minerals: implications for the source of carbonatites. Geochim Cosmochim Acta 73:239–255CrossRefGoogle Scholar
  14. Dingwell DB (1987) Melt viscosities in the system NaAlSi3O8 − H2O − F2O−1. University ParkGoogle Scholar
  15. Dingwell DB, Hess KU (1998) Melt viscosities in the system Na-Fe-Si-O-F-Cl: contrasting effects of F and Cl in alkaline melts. Am Mineral 83:1016–1021Google Scholar
  16. Dingwell DB, Webb SL (1992) The fluxing effect of fluorine at magmatic temperatures (600–800°C). Am Mineral 83:1013–1021Google Scholar
  17. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridege basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607–1631Google Scholar
  18. Eichelberger JC, Westrich HR (1981) Magmatic volatiles in explosive rhyolitic eruptions. Geophys Res Lett 8(7):757–760CrossRefGoogle Scholar
  19. Engi M, Lindsley DH (1980) Stability of titanian clinohumite: experiments and thermodynamic analysis. Contrib Mineral Petrol 72(4):415–424CrossRefGoogle Scholar
  20. Frei D, Liebscher A, Franz G, Wunder B, Klemme S, Blundy JD (2009) Trace element partitioning between orthopyroxene and anhydrous silicate melt on the lherzolite solidus from 1.1 to 3.2 GPa and 1,230 to 1,535°C in the model system Na2O–CaO–MgO–Al2O3–SiO2. Contrib Mineral Petrol 157:473–490CrossRefGoogle Scholar
  21. Gaetani GA (2003) The influence of melt structure on trace element partitioning near the peridotite solidus. Contrib Mineral Petrol 147:511–527CrossRefGoogle Scholar
  22. Gaetani GA, Grove TL (1995) Partitioning of rare earth elements between clinopyroxene and silicate melt: crystal-chemical controls. Geochim Cosmochim Acta 59:1951–1962CrossRefGoogle Scholar
  23. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131(4):323–346CrossRefGoogle Scholar
  24. Gagnon JE, Fryer BE, Samsom IM, Williams-Jones AE (2008) Quantitative analysis of silicate certified reference materials by LA-ICPMS with and without an internal standard. J Anal At Spectrom 23:1529–1537CrossRefGoogle Scholar
  25. Gao S, Liu X, Yuan H, Hattendorf B, Günther D, Chen L, Hu S (2002) Determination of forty two major and trace elements in USGS and NIST SRM glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandard Newslett 26:181–196CrossRefGoogle Scholar
  26. Gill J (1981) Orogenic andesites and plate tectonics. Springer, BerlinGoogle Scholar
  27. Giordano D, Romano C, Dingwell DB, Poe B, Behrens H (2004) The combined effects of water and fluorine on the viscosity of silicic magmas. Geochim Cosmochim Acta 68:5159–5168CrossRefGoogle Scholar
  28. Hamilton DL, Henderson CMB (1968) The preparation of silicate compositions by gelling method. Mineral Mag 36:832–838CrossRefGoogle Scholar
  29. Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8CrossRefGoogle Scholar
  30. Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U and Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166CrossRefGoogle Scholar
  31. Heinemann S, Sharp TG, Seifert F, Rubie DC (1997) The cubic-tetragonal phase transition in the system majorite Mg4Si4O12-pyrope Mg3Al2Si3O12.. Phys Chem Miner 24(3):206–221CrossRefGoogle Scholar
  32. Hermann J, Fitz Gerald JD, Malaspina N, Berry AJ, Scambelluri M (2007) OH-bearing planar defects in olivine produced by the breakdown of Ti-rich humite minerals from Dabie Shan (China). Contrib Mineral Petrol 153:417–428CrossRefGoogle Scholar
  33. Hervig RL, Bell DR (2005) Fluorine and hydrogen in mantle megacrysts. In: American Geophysical Union, fall meeting 2005, abstract #V41A–1426Google Scholar
  34. Hill E, Wood BJ, Blundy JD (2000) The effect of Ca-Tchermaks component on trace element partitioning between clinopyroxene and silicate melt. Lithos 53:203–215CrossRefGoogle Scholar
  35. Holtz F, Dingwell DB, Behrens H (1993) Effects of F, B2O3 and P2O5 on the solubility of water in haplogranitic melts compared to natural silicate melts. Contrib Mineral Petrol 113:492–501CrossRefGoogle Scholar
  36. Huang E, Chen CH, Huang T, Lin EH, Xu JA (2000) Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. Am Mineral 85:473–479Google Scholar
  37. Icenhower JP, London D (1997) Partitioning of fluorine and chlorine between biotite and granitic melt: experimental calibration at 200 MPa H2O. Contrib Mineral Petrol 127(1-2):17–29CrossRefGoogle Scholar
  38. Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW (2003) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst G3 7(Q02008)Google Scholar
  39. Johnson KTM (1998) Experimental determination of partition coefficients for rare earth and high-field strength between clinopyroxene, garnet, and basaltic melt at high pressures. Contrib Mineral Petrol 133:60–68CrossRefGoogle Scholar
  40. van Kan Parker M, Liebscher A, Frei D, van Sijl J, van Westrenen W, Blundy J, Franz G (2010) Experimental and computational study of trace element distribution between orthopyroxene and anhydrous silicate melt: substitution mechanisms and the effect of iron. Contrib Mineral Petrol 159:459–473CrossRefGoogle Scholar
  41. Kokelaar P (1986) Magma-water interactions in subaqueous and emergent basaltic volcanism. Bull Volcanol 48(5):275–289CrossRefGoogle Scholar
  42. Kröger FA, Vink HJ (1956) Solid state physics, vol 3. In: Seitz F, Turnbull D (eds) pp 273–301Google Scholar
  43. Laporte D, Toplis M, Seyler M, Devidal JL (2004) A new experimental technique for extraction liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib Mineral Petrol 146(4):463–484CrossRefGoogle Scholar
  44. Le Voyer M, Rose-Koga EF, Shimizu N, Grove TL, Schiano P (2010) Two contrasting H2O-rich components in primary melt inclusions from Mount Shasta. J Petrol 51(7):1571–1595CrossRefGoogle Scholar
  45. Mathez EA, Webster JD (2005) Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochim Cosmochim Acta 69(5):1275–1286CrossRefGoogle Scholar
  46. McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Am Mineral 88:1825–1831Google Scholar
  47. McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning on the Tinaquillo Lherzolite solidus at 1.5 GPa. Phys Earth Planet Interiors 139:129–147CrossRefGoogle Scholar
  48. Médard E (2004) Genèse des magmas riches en calcium dans les zones de subduction et sous les rides médio-océaniques: approche experimentale, vol 242. Université Blaise Pascal, Clermont–FerrandGoogle Scholar
  49. Médard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844CrossRefGoogle Scholar
  50. Métrich N, Schiano P, Clocchiatti R, Maury RC (1999) Transfer of sulfur in subduction settings: an example from Batan Island (Luzon volcanic arc, Philippines). Earth Planet Sci Lett 167:1–14CrossRefGoogle Scholar
  51. Mottona A (1986) Crystal-chemical evaluation of garnet and omphacite microprobe analyses: its bearing on the classification of eclogites. Lithos 19(3–4):171–186CrossRefGoogle Scholar
  52. Muñoz JL, Ludington S (1977) Fluorine-hydroxyl exchange in synthetic muscovite and its application to muscovite-biotite assemblages. Am Mineral 62:304–308Google Scholar
  53. Nagasawa H (1966) Trace element partition coefficient in ionic crystals. Science 152:767–769CrossRefGoogle Scholar
  54. Nielsen RL (1985) A method for the elimination of the composition dependence of trace element distribution coefficients. Geochim Cosmochim Acta 49:1775–1779CrossRefGoogle Scholar
  55. Noda T, Roy R (1956) OH-F exchange in fluorine phlogopite. Am Mineral 41:929–932Google Scholar
  56. Oberti R, C HF, Cannillo E, Cámara F (2007) Long-range order in amphiboles. Rev Mineral Geochem 67:125–171CrossRefGoogle Scholar
  57. Onuma N, Higuchi H, Wakita H, Nagasawa H (1968) Trace element partitioning between two pyroxenes and the host lava. Earth Planet Sci Lett 5:47–51CrossRefGoogle Scholar
  58. Parkinson IJ, Arculus RJ (1999) The redox state of subduction zones: insights from arc-peridotites. Chem Geol 160:409–423CrossRefGoogle Scholar
  59. Richet P, Lejeune AM, Holtz F, Roux J (1996) Water and the viscosity of andesite melts. Chem Geol 128(185–197)Google Scholar
  60. Roeder PL, Emslie RF (1970) Olivine–liquid equilibrium. Contrib Mineral Petrol 19:275–289CrossRefGoogle Scholar
  61. Roggensack K, Hervig RL, McKnight SB, Williams SN (1997) Explosive basaltic volcanism from Cerro Negro volcano: influence of volatiles on eruptive style. Science 277(5332):1639–1642CrossRefGoogle Scholar
  62. Romano C, Poe BT, Mincione C, Hess KU, Dingwell DB (2001) The viscosities of dry and hydrous XAlSi3O8 (X=Li, Na, K, Ca0.5,Mg0.5) melts. Chem Geol 174:115–132CrossRefGoogle Scholar
  63. Rose-Koga EF, Shimizu N, Devidal JL, Koga KT, Le Voyer M, Döbeli M (2008) Investigation of F, S and Cl standards by ion probe and electron probe. In: Eos Trans. AGU, fall meeting supplement, vol #Abstract V31B–2145Google Scholar
  64. Salters VJM, Longhi JE, Bizimis M (2002) Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochem Geophys Geosyst G3 3(7):1–23Google Scholar
  65. Schosnig M, Hoffer E (1998) Compositional dependence if REE partitioning between diopside and melt at 1 atmosphere. Contrib Mineral Petrol 133:205–216CrossRefGoogle Scholar
  66. Schulze F, Behrens H, Holtz F, Roux J, Johannes W (1996) The influence of H2O on the viscosity of a haplogranitic melt. Am Mineral 81:1155–1165Google Scholar
  67. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica A 32:751–767CrossRefGoogle Scholar
  68. Shimizu N, Hart SR (1982) Isotope fractionation in secondary ion mass spectrometry. J Appl Phys 53(3):1303–1311CrossRefGoogle Scholar
  69. Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117(3-4):619–635CrossRefGoogle Scholar
  70. Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137(1–4):45–55CrossRefGoogle Scholar
  71. Spilliaert N, Métrich N, Allard P (2006) S–Cl–F degassing pattern of water-rich alkali basalt: modelling and relationship with eruption styles on Mount Etna volcano. Earth Planet Sci Lett 248:772–786CrossRefGoogle Scholar
  72. Stormer JC, Carmichael ISE (1971) Fluorine-hydroxyl exchange in apatite and biotite: a potential igneous geothermometer. Contrib Mineral Petrol 31(2):121–131CrossRefGoogle Scholar
  73. Storn R, Price K (1997) Differencial evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11:341–359CrossRefGoogle Scholar
  74. Tamic N, Behrens H, Holtz F (2001) The solubility of H2O and CO2 in rhyolitic melts in equilibrium with mixed CO2- and H2O fluid phase. Chem Geol 174:333–347CrossRefGoogle Scholar
  75. Tatsumi Y, Eggins S (1995) Subduction zone magmatism. Blackwell Science, BostonGoogle Scholar
  76. Taura H, Yurimoto H, Kurita K, Sueno S (1998) Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Phys Chem Mineral 25:469–484CrossRefGoogle Scholar
  77. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39CrossRefGoogle Scholar
  78. Valley JW, Essene EJ, Peacor DR (1983) Fluorine-bearing garnet in Adirondack calc-silicates. Am Mineral 68:444–448Google Scholar
  79. Volfinger M, Robert JL, Vielzeuf D, Neiva AMR (1985) Structural control of the chlorine content of OH-bearing silicate (micas and amphiboles). Geochim Cosmochim Acta 49(1):37–48CrossRefGoogle Scholar
  80. Wade JA, Planck T, Melson WG, Soto GJ, Hauri EH (2006) The volatile content of magmas from Arenal volcano, Costa Rica. J Volcanol Geotherm Res 157(1-3):94–120CrossRefGoogle Scholar
  81. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1-3):217–240CrossRefGoogle Scholar
  82. Webster JD, Rebbert CR (1998) Experimental investigation of H2O and Cl- solubilities in F-enriched silicate liquids; implications for volatile saturation of topaz rhyolite magmas. Contrib Mineral Petrol 132:198–207CrossRefGoogle Scholar
  83. Weiss M (1997) Clinohumites: a field and experimental study. Phd thesis, ETH-ZürichGoogle Scholar
  84. van Westrenen W, Draper DS (2007) Quantifying garnet-melt trace element partitioning using lattice-strain theory: new crystal-chemical and thermodynamic constraints. Contrib Mineral Petrol 154:717–730CrossRefGoogle Scholar
  85. van Westrenen W, Blundy JD, Wood BJ (1999) Crystal-chemical controls on trace element partitioning between garnet and anhydrous silicate melt. Am Mineral 84:838–847Google Scholar
  86. van Westrenen W, Blundy JD, Wood BJ (2000) Effect of Fe2+ on garnet-melt trace element partitioning: experiments in FCMAS and quantification of crystal-chemical controls in natural systems. Lithos 53:189–201CrossRefGoogle Scholar
  87. Whittington A, Richet P, Linard Y, Holtz F (2001) The viscosity of hydrous phonolites and trachytes. Chem Geol 174:209–223CrossRefGoogle Scholar
  88. Wilson L (1980) Relationships between pressure, volatile content and ejecta velocity in three types of volcanic explosion. J Volcanol Geotherm Res 8(2-4):297–313CrossRefGoogle Scholar
  89. Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Mineral Petrol 129:166–181CrossRefGoogle Scholar
  90. Zanetti A, Tiepolo M, Oberti R, Vannucci R (2004) Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos 75:39–54CrossRefGoogle Scholar
  91. Zimova M, Webb SL (2006) The effect of chlorine on the viscosity of Na2O−Fe2O3−Al2O3−SiO2 melts. Am Mineral 91:344–352CrossRefGoogle Scholar
  92. Zimova M, Webb SL (2007) The combined effects of water and fluorine on the viscosity of aluminosilicate melts. Geochim Cosmochim Acta 71:1553–1562CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Célia Dalou
    • 1
    • 2
    • 3
    Email author
  • Kenneth T. Koga
    • 1
    • 2
    • 3
  • Nobumichi Shimizu
    • 4
  • Julien Boulon
    • 5
  • Jean-Luc Devidal
    • 1
    • 2
    • 3
  1. 1.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.CNRS, UMR 6524, LMVClermont-FerrandFrance
  3. 3.IRD, R 163, LMVClermont-FerrandFrance
  4. 4.Woods Hole Oceanographic InstitutionWoods HoleUSA
  5. 5.Laboratoire de Météorologie PhysiqueClermont Université, Université Blaise PascalClermont-FerrandFrance

Personalised recommendations