Contributions to Mineralogy and Petrology

, Volume 163, Issue 3, pp 483–504 | Cite as

The early Miocene (~25 Ma) volcanism in the northern Kyushu-Palau Ridge, enriched mantle source injection during rifting prior to the Shikoku backarc basin opening

  • Satoru HaraguchiEmail author
  • Teruaki Ishii
  • Jun-Ichi Kimura
  • Yasuhiro Kato
Original Paper


The northern Kyushu-Palau Ridge (KPR), remnant conjugate arc of the Izu-Ogasawara (Bonin)-Mariana (IBM) active arc, is dominated by basalt-andesite except for the Komahashi-Daini Seamount where acidic plutonic rocks of 38 Ma were recovered. These mafic to intermediate volcanics are produced by the rifting volcanism in the proto-IBM arc associated with spreading of the Shikoku Basin. The HFSE and HREE contents and ratios of these volcanics indicate enriched source mantle composition compared to recent volcanic front. The LILE ratios exhibit similar characteristics to reararc volcanism of the recent Izu arc, and some enriched volcanics exhibit high abundance of sediment melt inputs. Based on these observations and compilations of the published data set, the replacement event of the wedge mantle under the IBM arc occurred two times. The first event occurred between 45 and 38 Ma, with Pacific type mantle being replaced by depleted Indian type mantle. The second event occurred between 36 and 25 Ma, enriched mantle flowed from reararc side. The slab component during the proto-IBM arc rifting was a similar characteristic to recent reararc volcanism of the Izu arc, and sediment melt added in a local area.


Kyushu-Palau Ridge Backarc spreading Rifting volcanism Reararc volcanism Enriched mantle Incompatible elements Mantle replacement 



We are much indebted to the captain and crew of R/V Tansei-maru for sample recovery. We express gratitude to Prof. Hidekazu Tokuyama, Dr. Shiki Machida and Mr. Ayanori Misawa for discussions of volcanism models and improvement of volcanism model cartoons. We would like to thank Dr. Stephen Obrochta and Dr. Marc Humblet for detailed comments on the manuscript. We also would like to thank Mr. Taichi Sato for drawing maps used in this study by Genelic Mapping Tool (GMT) and discussions. We also thank Mr. Yutaro Takaya for assistance with sample preparation and analyses by ICP-MS at the GSE, School of Engineering, University of Tokyo. We would like to thank Timothy L. Grove and two reviewers for their constructive reviews.

Supplementary material

410_2011_680_MOESM1_ESM.tif (29.5 mb)
Supplementary material 1 (TIFF 30234 kb)
410_2011_680_MOESM2_ESM.eps (528 kb)
Supplementary material 2 (EPS 528 kb)
410_2011_680_MOESM3_ESM.eps (409 kb)
Supplementary material 3 (EPS 408 kb)
410_2011_680_MOESM4_ESM.eps (1.3 mb)
Supplementary material 4 (EPS 1337 kb)
410_2011_680_MOESM5_ESM.eps (3.2 mb)
Supplementary material 5 (EPS 3268 kb)
410_2011_680_MOESM6_ESM.doc (30 kb)
Supplementary material 6 (DOC 30 kb)
410_2011_680_MOESM7_ESM.doc (40 kb)
Supplementary material 7 (DOC 40 kb)
410_2011_680_MOESM8_ESM.xls (76 kb)
Supplementary material 8 (XLS 74 kb)
410_2011_680_MOESM9_ESM.xls (30 kb)
Supplementary material 9 (XLS 30 kb)
410_2011_680_MOESM10_ESM.xls (45 kb)
Supplementary material 10 (XLS 45 kb)
410_2011_680_MOESM11_ESM.xls (22 kb)
Supplementary material 11 (XLS 21 kb)
410_2011_680_MOESM12_ESM.xls (31 kb)
Supplementary material 12 (XLS 31 kb)


  1. Arculus RJ, Powell R (1986) Source component mixing in the region of arc magma generation. J Geophys Res 91:5913–5926CrossRefGoogle Scholar
  2. Arculus RJ, Pearce JA, Multon BJ, van der Laan SR (1992) Igneous stratigraphy and major-element geochemistry of holes 786A and 786B. In: Fryer P, Pearce JA, Stolling LB, et al. (eds) Proc ODP Sci Res vol 125, pp 143–168Google Scholar
  3. Bedard JH (2006) A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Chosmochim Acta 70:1188–1214CrossRefGoogle Scholar
  4. Bence SE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76:382–402CrossRefGoogle Scholar
  5. Bryan WB, Finger LW, Chayes F (1969) Estimating proportions in petrographic mixing equations by least squares approximation. Science 163:926–927CrossRefGoogle Scholar
  6. Bryant CJ, Arculus AL, Eggins SM (2003) The geochemical evolution of the Izu-Bonin arc system: a perspective from tephras recovered by deep-sea drilling. Geochem Geophys Geosyst 4:1094. doi: 10.1029/2002GC000427 CrossRefGoogle Scholar
  7. Clague DA and Dalrymple GB (1987) The Hawaiian-Emperor volcanic chain. Part I. Geologic evolution. In: Decker RW, Wright TL and Stauffer PH (eds) Volcanism in Hawaii 1, US Geol Surv Prof Pap, pp 5–54Google Scholar
  8. Cosca MA, Arculus RJ, Pearce JA, Mitchell JB (1998) 40Ar/39Ar and K-Ar geochronological age constraints for the inception and early evolution of the Izu-Bonin-Mariana arc system. Island Arc 7:579–595CrossRefGoogle Scholar
  9. Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninite and related rocks. Unwin Hyman, London, pp 1–49Google Scholar
  10. DeBari SM, Taylor B, Spencer K, Fujioka K (1999) A trapped Philippine Sea plate origin for MORB from the inner slope of the Izu-Bonin trench. Earth Planet Sci Lett 174:183–197CrossRefGoogle Scholar
  11. Eliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102:14991–15019CrossRefGoogle Scholar
  12. Fujioka K, Matsuo Y, Nishimura A, Koyama M, Rodolfo KS (1992) Tephras of the Izu-Bonin forearc (Sites 787, 792, and 793). In: Taylor B, Fujioka K et al. (eds) Proc ODP Sci Res vol 126, pp 47–74Google Scholar
  13. Gill J (1981) Orogenic Andesites and Plate Tectonics. Springer, BerlinCrossRefGoogle Scholar
  14. Goto A, Tatsumi Y (1991) Quantitative analysis of rock sample using X-ray fluorescence analyzer. Rigalu-Denki J (in Japanese) 22:28–44Google Scholar
  15. Haraguchi S, Ishii T (2007) Simultaneous boninitic and tholeiitic volcanisms in the Izu forearc region during early arc volcanism based on ODP Leg 125 site 786. Contrib Mineral Petrol 153:509–553CrossRefGoogle Scholar
  16. Haraguchi S, Ishii T, Kimura J-I, Ohara Y (2003) Formation of tonalite from basaltic magma at the Komahashi-Daini Seamount, northern Kyushu-Palau Ridge in the Philippine Sea, and growth of Izu-Ogasawara (Bonin)-Mariana arc crust. Contrib Mineral Petrol 145:151–168CrossRefGoogle Scholar
  17. Haraguchi S, Ishii T, Kimura J-I (2008) Early tholeiite and calk-alkaline arc magmatism of middle to late Eocene in the southern Ogasawara (Bonin) Ridge. Contrib Mineral Petrol 155:593–618CrossRefGoogle Scholar
  18. Hickey-Vargas R, Hergt JM, Spadea P (1995) The Indian Ocean-type isotopic signature in western Pacific marginal basins: origin and significance. In: Taylor B, Natland J (eds) Active margins and marginal basins of the Western Pacific, Geophys. Monogr. Ser., 88, Washington, pp 175–197Google Scholar
  19. Hochstaedter AG, Gill JG, Taylor B, Ishizuka O, Yuasa M, Morita S (2000) Across-arc geochemical trends in the Izu-Bonin arc: constraints on source composition and mantle melting. J Geophys Res 105(B1):495–512CrossRefGoogle Scholar
  20. Hochstaedter AG, Gill G, Peters R, Broughton P, Holden P, Taylor B (2001) Across-arc geochemical trends in the Izu-Bonin arc: contributions from the subducting slab. Geochem Geophys Geosyst 2:1019. doi: 10.1029/2000GC000105 CrossRefGoogle Scholar
  21. Imai N, Terashima S, Itoh S, Ando A (1995) 1994 compilation of analytical data for minor and trace elements in 17 GSJ geochemical reference samples, igneous rock series. Geostand Newsl 19:135–213CrossRefGoogle Scholar
  22. Ishiwatari A, Yanagida Y, Li Y-B, Ishii T, Haraguchi S, Koizumi K, Ichiyama Y, Umeka M (2006) Dredge petrology of the boninite and adakite-bearing Hahajima Seamount of the Ogasawara (Bonin) forearc: an ophiolite or a serpentinite seamount? Island Arc 15:102–118CrossRefGoogle Scholar
  23. Ishizuka O, Uto K, Yuasa M, Hochstaedter AG (1998) K-Ar age from seamount chains in the back-arc region of the Izu-Ogasawara arc. Island Arc 7:408–421CrossRefGoogle Scholar
  24. Ishizuka O, Taylor RN, Milton JA, Nesbitt RW (2003) Fluid-mantle interaction in an intra-oceanic arc: constraints from high-precision Pb isotopes. Earth Planet Sci Lett 211:211–236CrossRefGoogle Scholar
  25. Ishizuka O, Kimura J, Li Y, Stern RJ, Reagan M, Taylor RN, Ohara Y, Bloomer SH, Ishii T, Hargrove US, Haraguchi S (2006a) Temporal variations of infant arc volcanism in the Izu-Bonin forearc: new age, chemical, and isotopic constraints. Earth Planet Sci Lett 250:385–401CrossRefGoogle Scholar
  26. Ishizuka O, Taylor RN, Milton JA, Nesbitt RW, Yuasa M, Sakamoto I (2006b) Variation in the mantle sources of the northern Izu arc with time and space-constraints from high-precision Pb isotope. J Vol Geothem Res 156:266–290CrossRefGoogle Scholar
  27. Ishizuka O, Yuasa M, Taylor RN, Sakamoto I (2009) Two contrasting magmatic types coexist after the cessation of back-arc spreading. Chem Geol 266:274–296CrossRefGoogle Scholar
  28. Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosys 1:1007. doi: 10.1029/1999GC000014 CrossRefGoogle Scholar
  29. Kato Y, Fujinaga K, Suzuki K (2005) Major and trace element geochemistry and Os isotopic composition of metalliferous umbers from the Late Cretaceous Japanese accretionary complex. Geochem Geophys Geosys 6:Q07004. doi: 10.1029/2005GC000920 CrossRefGoogle Scholar
  30. Katsura T, Shimamura K, Collaboratores in Continental Shelf Surveys Office (1994) Geological, geochemical research of bottom samples, from continental shelf surveys, H. D. Japan (part 1): preliminary study for ocean floor on the Japanese continental shelves (In Japanese). Rept Hydrogr Res 30:345–381Google Scholar
  31. Kimura J-I, Harker BR, van Keken PE, Kawabata H, Yoshida T, Stern RJ (2009) Arc basalts simulator version 2, a simulation for slab dehydration and fluid-fluxed mantle melting for arc basalts: modeling scheme and application. Geochem Geophys Geosyst 10:Q09004. doi: 10.1029/2008GC002217 CrossRefGoogle Scholar
  32. Kimura J-I, Kent AJR, Rowe MC, Katakuse M, Nakano F, Hacker BR, van Keken PE, Kawabata H, Stern RJ (2010) Origin of cross-chain geochemical variation in Quaternary lavas form the northern Izu arc: using a quantitative mass balance approach to identify mantle sources and mantle wedge processes. Geochem Geophys Geosyst 11:Q10011. doi: 10.1029/2010GC993959 CrossRefGoogle Scholar
  33. Kobayashi K, Isezaki N (1976) Magnetic anomalies in the Sea of Japan and the Shikoku Basin: possible tectonic implications. Geophys Monogr AGU 19:235–252CrossRefGoogle Scholar
  34. Kodaira S, Sato S, Takahashi N, Miura S, Tamura Y, Tatsumi Y, Kaneda Y (2007) New seismological costraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology 35:1031–1034CrossRefGoogle Scholar
  35. Kodaira S, Sato S, Takahashi N, Yamashita M, No T, Kaneda Y (2008) Seismic imaging of a possible paleoarc in the Izu-Bonin intraoceanic arc and its implications for arc evolution processes. Geochem Geophys Geosyst 9:Q10X01. doi: 10.1029/2008GC002073 CrossRefGoogle Scholar
  36. Li K, Shinohara M, Suyehiro K, Kurashimo E, Miura S, Nishikawa H (1997) Crustal structure of north Kyushu-Palau Ridge by ocean bottom seismographic observation (Abstract). Proc Seismo Soc Japan 2:38Google Scholar
  37. Machida S, Ishii T, Kimura J-I, Awaji S, Kato Y (2008) Petrology and geochemistry of across-chains in the Izu-Bonin back arc: three mantle components with contributions of hydrous liquids from a deeply subducted slab. Geochem Geophys Geosyst 9:Q05002. doi: 10.1029/2007GC001641 CrossRefGoogle Scholar
  38. Maehara K, Maeda J (2004) Evidence for high-Ca boninite magmatism from Paleogene primitive low-K tholeiite, Mukoojima, Hahajima Island group, southern Bonin (Ogasawara) forearc, Japan. Island Arc 13:452–465CrossRefGoogle Scholar
  39. Morita S (1998) Structural and volcanic evolution of the northern Izu-Bonin arc. Ph D thesis University of Tokyo, TokyoGoogle Scholar
  40. Nakamura Y, Kushiro I (1970) Compositional relations of coexisting orthopyroxene, pigeonite, and augite in a tholeiitic andesite from Hakone Volcano. Contrib Mineral Petrol 26:265–275CrossRefGoogle Scholar
  41. Nishizawa A, Kaneda K, Katagiri Y, Kasahara J (2007) Variation in crustal structure along the Kyushu-Palau Ridge at 15–21 degrees N on the Philippine Sea plate based on seismic refraction profiles. Earth Planet Space 59:e17–e20Google Scholar
  42. Ohara Y, Ishii T, Fujioka K, Kato Y, Haraguchi S, Kasuga S, Sasaki T, Kanamatsu T, Sakamoto I (1997) Report of multi-channel seismic reflection and submersible Shinkai 6500 studies at Kyushu-Palau Ridge. Rep Hydrogr Res (Hydrographic Department of Japan, Tokyo) 33:85–93Google Scholar
  43. Okino K, Shimakawa Y, Nagaoka J (1994) Evolution of the Shikoku Basin. J Geomag Geolectr 46:463–479CrossRefGoogle Scholar
  44. Okino K, Ohara Y, Kasuga S, Kato Y (1999) The Philippine Sea: New survey results reveal the structure and the history of the marginal basins. Geophys Res Lett 26:2287–2290CrossRefGoogle Scholar
  45. Pearce JA (1982) Trace element characteristics of lavas from destructive place boundaries. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. Wiley, New York, pp 525–548Google Scholar
  46. Pearce JA (1983) Role of the sub-continental lithosphere I magma genesis at active continental margins. In: Hawkesworth CJ, Norry MJ (eds) Continental Basalts and Mantle Xenoliths. Shiva Press, Natwifh, pp 230–249Google Scholar
  47. Pearce JA, Thirlwall MF, Ingram G, Murton BL, Arculus RJ, van der Laan SR (1992) Isotopic evidence for the origin of boninites and related rocks drilled in the Izu-Bonin (Ogasawara) forearc, Leg 125. In: Fryer P, Pearce JA, Stolling LB, et al. (eds) Proc ODP Sci Res vol 125, pp 237–261Google Scholar
  48. Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basis system: implications for the nature and distribution of subduction components. Geochem Geophys Geosys 6:2004GC000895Google Scholar
  49. Peate DW, Pearce JA, Hawkesworth CJ, Colley H, Edwards CMH, Hirose K (1997) Geochemical variations in Vanuatu Arc lavas: the role of subducted material and a variable mantle wedge composition. J Petrol 38:1331–1358CrossRefGoogle Scholar
  50. Reagan MK, Ishizuka O, Stern RJ, Kelley KA, Ohara Y, Blichert-Toft J, Bloomer SH, Cash J, Fryer P, Hanan BB, Hickey-Vargas R, Ishii T, Kimura J-I, Peate DW, Rowe MC, Woods M (2010) Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem Geophys Geosyst 11:Q03X12. doi: 10.1029/2009GC002871 CrossRefGoogle Scholar
  51. Sharp WD, Clague DA (2006) 50-Ma initiation of Hawaiian-Emperor bend records major change in Pacific Plate motion. Science 313:1281–1284CrossRefGoogle Scholar
  52. Shibata K, Okuda Y (1975) K-Ar ages of granite fragment dredged from the 2nd Komahashi Seamount. Bull Geol Surv Japan (in Japanese) 26:71–72Google Scholar
  53. Shibata K, Mizuno A, Yuasa M, Uchida S, Nakagawa T (1977) Further K-Ar dating of tonalite dredged from the Komahashi-Daini Seamount. Bull Geol Surv Japan (in Japanese) 28:1–4Google Scholar
  54. Shiki T, Mizuno A, Kobayashi K (1985) Data listing of the bottom materials dredged and cored from the Northern Philippine Sea. In: Shiki T (ed) Geology of the Northern Philippine Sea. Tokai University Press, Tokyo, pp 23–41Google Scholar
  55. Shukuno H, Tamura Y, Tani K, Chang Q, Suzumi T, Fiske RS (2006) Origin of silicic magmas and the compositional gap at Sumisu submarine caldera, Izu-Bonin arc, Japan. J Volcanol Geotherm Res 156:187–216CrossRefGoogle Scholar
  56. Straub SM (2003) The evolution of the Izu Bonin-Mariana volcanic arcs (NW Pacific) in terms of major element chemistry. Geochem Geophys Geosyst 4:1018. doi: 10.1029/2002GC000357 CrossRefGoogle Scholar
  57. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Magmatism in the ocean basins. Geol Soc Spec Publ vol 42, pp 313–345Google Scholar
  58. Suyehiro K, Takahashi N, Ariie Y, Yokoi Y, Hino R, Shinohara M, Kanazawa T, Hirata N, Tokuyama H, Taira A (1996) Continental crust, crustal underplating, and low-Q upper mantle beneath an oceanic island arc. Science 272:390–392CrossRefGoogle Scholar
  59. Tamura Y, Tatsumi Y (2002) Remelting of an andesitic crust as a possible origin for rhyolitic magma in oceanic arcs: an example from the Izu–Bonin arc. J Petrol 43:1029–1047CrossRefGoogle Scholar
  60. Tamura Y, Tani K, Ishizuka O, Chang Q, Shukuno H, Fiske RS (2005) Are arc basalts dry, wet, or both? Evidence from the Sumisu Caldera Volcano, Izu–Bonin Arc, Japan. J Petrol 46:1769–1803CrossRefGoogle Scholar
  61. Tamura Y, Tani K, Chang Q, Shukuno H, Kawabata H, Ishizuka O, Fiske RS (2007) Wet and dry basalt magma evolution at Torishima Volcano, Izu-Bonin Arc, Japan: the possible role of phengite in the downgoing slab. J Petrol 48:1999–2031CrossRefGoogle Scholar
  62. Tatsumi Y, Maruyama S (1989) Boninites and high-Mg andesites: tectonics and petrogenesis. In: Crawford AJ (ed) Boninite and related rocks. Unwin Hyman, London, pp 50–71Google Scholar
  63. Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high pressure experiments and natural rocks. J Volcanol Geotherm Res 29:293–309CrossRefGoogle Scholar
  64. Taylor B (1992) Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana arc. In: Taylor B, Fujioka K et al. (eds) Proc ODP Sci Res vol 126, pp 627–651Google Scholar
  65. Taylor RN, Mitchell JG (1992) K-Ar dating results from whole-rock and mineral separates of the Izu-Bonin forearc basement, Leg 126. Proc ODP Sci Res 126:677–680Google Scholar
  66. Taylor RN, Nesbitt RW (1995) Arc volcanism in an extensional regime at the initiation of subduction: a geochemical study of Hahajima, Bonin Islands, Japan. In: Smelly JL (ed) Volcanism Associated with Extension at Consuming Plate Margins. Geol Soc Spec Publ vol 81, pp 115–134Google Scholar
  67. Taylor RN, Lapierre H, Vidal P, Nesbitt RW, Croudace IW (1992) Igneous geochemistry of forearc volcanic rocks from the Izu-Bonin arc, Holes 792E and 793B. Proc ODP Sci Res 126:431–447Google Scholar
  68. Taylor RN, Nesbitt RW, Vidal P, Harmon RS, Auvray R, Croudace IW (1994) Mineralogy, chemistry, and genesis of the boninite series volcanics, Chichijima, Bonin Islands, Japan. J Petrol 35:577–617CrossRefGoogle Scholar
  69. Tollstrup D, Gill J, Kent A, Prinkey D, Williams R, Tamura Y, Ishizuka O (2010) Across-arc geochemical trends in the Izu-Bonin arc: contributions from the subducting slab, revisited. Geochem Geophys Geosyst 11:Q01X10. doi: 10.1029/2009GC002847 CrossRefGoogle Scholar
  70. Usui A, Nishimura A, Ishizuka O (1997) Submersible investigation of manganese crusts and nodules from Komahashi-Daini Seamount, Kyushu-Palau Ridge (Shinkai 2000 dives 820 and 868). JAMSTEC J Deep Sea Rep 13:127–144Google Scholar
  71. Yajima K (2003) Two types of chemical trends found in low-Ca boninite suite from Chichijima, Ogasawara (Bonin) arc. Jap Magag Mineral Petrol Sci 32:51–67 (in Japanese)Google Scholar
  72. Yajima K, Fujimaki H, Koroda N (2001) Primitive tholeiites and calc-alkaline rocks from Hahajima, Bonin (Ogasawara) archipelago. Jap Magag Mineral Petrol Sci 30:164–179 (in Japanese)Google Scholar
  73. Yuasa M (1992) Origin of along-arc geologic variations on the volcanic front of the Izu-Ogasawara (Bonin) arc. Bull Geol Soc Japan 43:457–466Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Satoru Haraguchi
    • 1
    Email author
  • Teruaki Ishii
    • 2
  • Jun-Ichi Kimura
    • 3
  • Yasuhiro Kato
    • 4
  1. 1.Atmosphere and Ocean Research InstituteUniversity of TokyoKashiwaJapan
  2. 2.Fukada Geological InstituteTokyoJapan
  3. 3.Japan Agency for Marine Earth Science and Technology (JAMSTEC)YokosukaJapan
  4. 4.Department of Systems Innovation, Graduate School of EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations