Advertisement

Contributions to Mineralogy and Petrology

, Volume 163, Issue 2, pp 189–208 | Cite as

Cumulate xenoliths from St. Vincent, Lesser Antilles Island Arc: a window into upper crustal differentiation of mantle-derived basalts

  • P. M. E. TollanEmail author
  • I. Bindeman
  • J. D. Blundy
Original Paper

Abstract

In order to shed light on upper crustal differentiation of mantle-derived basaltic magmas in a subduction zone setting, we have determined the mineral chemistry and oxygen and hydrogen isotope composition of individual cumulus minerals in plutonic blocks from St. Vincent, Lesser Antilles. Plutonic rock types display great variation in mineralogy, from olivine–gabbros to troctolites and hornblendites, with a corresponding variety of cumulate textures. Mineral compositions differ from those in erupted basaltic lavas from St. Vincent and in published high-pressure (4–10 kb) experimental run products of a St. Vincent high-Mg basalt in having higher An plagioclase coexisting with lower Fo olivine. The oxygen isotope compositions (δ18O) of cumulus olivine (4.89–5.18‰), plagioclase (5.84–6.28‰), clinopyroxene (5.17–5.47‰) and hornblende (5.48–5.61‰) and hydrogen isotope composition of hornblende (δD = −35.5 to −49.9‰) are all consistent with closed system magmatic differentiation of a mantle-derived basaltic melt. We employed a number of modelling exercises to constrain the origin of the chemical and isotopic compositions reported. δ18OOlivine is up to 0.2‰ higher than modelled values for closed system fractional crystallisation of a primary melt. We attribute this to isotopic disequilibria between cumulus minerals crystallising at different temperatures, with equilibration retarded by slow oxygen diffusion in olivine during prolonged crustal storage. We used melt inclusion and plagioclase compositions to determine parental magmatic water contents (water saturated, 4.6 ± 0.5 wt% H2O) and crystallisation pressures (173 ± 50 MPa). Applying these values to previously reported basaltic and basaltic andesite lava compositions, we can reproduce the cumulus plagioclase and olivine compositions and their associated trend. We conclude that differentiation of primitive hydrous basalts on St. Vincent involves crystallisation of olivine and Cr-rich spinel at depth within the crust, lowering MgO and Cr2O3 and raising Al2O3 and CaO of residual melt due to suppression of plagioclase. Low density, hydrous basaltic and basaltic andesite melts then ascend rapidly through the crust, stalling at shallow depth upon water saturation where crystallisation of the chemically distinct cumulus phases observed in this study can occur. Deposited crystals armour the shallow magma chamber where oxygen isotope equilibration between minerals is slowly approached, before remobilisation and entrainment by later injections of magma.

Keywords

St. Vincent Lesser Antilles Oxygen Hydrogen Isotopes Cumulates Differentiation Fractional Crystallisation Disequilibrium 

Notes

Acknowledgments

JDB acknowledges research funding from the Leverhulme Trust (F/00182/AY) and European Research Council (247162-CRITMAG). We would like to thank S. Kearns for help with Bristol electron microprobe, J. Palandri for assistance with stable isotope analyses and J. Fawcett-Thorne for thin section preparation. PMET would like to thank E. Melekhova and R. Arculus for constructive discussions. Reviews by E. Martin and M. Portnyagin were gratefully received.

Supplementary material

410_2011_665_MOESM1_ESM.doc (92 kb)
Supplementary material 1 (DOC 92 kb)
410_2011_665_MOESM2_ESM.doc (226 kb)
Supplementary material 2 (DOC 226 kb)

References

  1. Anderson DJ, Lindsley DH, Davdison PM (1993) QUILF: a pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350CrossRefGoogle Scholar
  2. Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203:937–955CrossRefGoogle Scholar
  3. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539CrossRefGoogle Scholar
  4. Arculus RJ (1994) Aspects of magma genesis in arcs. Lithos 33:189–208CrossRefGoogle Scholar
  5. Arculus RJ, Wills KJA (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles Island Arc. J Petrol 21(4):743–799Google Scholar
  6. Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthpyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40CrossRefGoogle Scholar
  7. Bindeman I (2008) Oxygen isotopes in Mantle and Crustal Magmas revealed by single crystal anlaysis. Rev Mineral Geochem 69:445–478CrossRefGoogle Scholar
  8. Bindeman IN, Ponomareva VV, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochim Cosmochim Acta 68(4):841–865CrossRefGoogle Scholar
  9. Bolhar R, Weaver SD, Whitehouse MJ, Palin JM, Woodhead JD, Cole JW (2008) Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematic of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth Planet Sci Lett 268:312–324CrossRefGoogle Scholar
  10. Bouvier A-S, Métrich N, Deloule E (2008) Slab-derived fluids in the Magma sources of St. Vincent (Lesser Antilles Arc): volatile and light element imprints. J Petrol 49(8):1427–1448Google Scholar
  11. Bouvier A-S, Deloule E, Métrich N (2010) fluid inputs to Magma sources of St. Vincent and Grenada (Lesser Antilles): new insights from trace elements in Olivine-hosted Melt inclusions. J Petrol 51(8):1597–1615Google Scholar
  12. Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionations involving diopside, forsterite, magnetite, and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995CrossRefGoogle Scholar
  13. Clowe CA, Popp RK, Fritz SJ (1988) Experimental investigation of the effect of oxygen fugacity on ferric-ferrous ratios and unit-cell parameters of four natural clinoamphiboles. Am Mineral 73:487–499Google Scholar
  14. Cooper KM, Eiler JM, Asimow PD, Langmuir CH (2004) Oxygen isotope evidence for the origin of enriched mantle beneath the mid-Atlantic ridge. Earth Planet Sci Lett 220:297–316CrossRefGoogle Scholar
  15. Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  16. Danyushevsky LV, Plechov P (2011) Petrolog3: integrated software for modelling crystallisation processes. Geochem Geophys Geosyst, doi:  10.1029/2011GC003516
  17. Davidson JP, Harmon RS (1989) Oxygen isotope constraints on the petrogenesis of volcanic arc magmas from Martinique, Lesser Antilles. Earth Planet Sci Lett 95:255–270CrossRefGoogle Scholar
  18. Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35(9):787–790Google Scholar
  19. DeBari SM, Coleman RG (1989) Examination of the deep levels of an island arc—evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res 94:4373–4391CrossRefGoogle Scholar
  20. Deer WA, Howie RA, Zussman J (1996) An introduction to the rock-forming minerals. Prentice Hall, Englewood CliffsGoogle Scholar
  21. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric analyses, using stoichiometric criteria. Mineral Mag 51:431–435CrossRefGoogle Scholar
  22. Dungan MA, Davidson J (2004) Partial assimilative recycling of the mafic plutonic roots of arc volcanoes: an example from the Chilean Andes. Geology 32:773–776CrossRefGoogle Scholar
  23. Eggins SM (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib Mineral Petrol 114:79–100CrossRefGoogle Scholar
  24. Eiler JM (2001) Oxygen isotope variations in basaltic lavas and upper mantle rocks. Rev Min Geochem 43:319–364CrossRefGoogle Scholar
  25. Eiler J, Crawford A, Elliott T, Farley KA, Valley JW, Stolper EM (2000) Oxygen isotope geochemistry of Oceanic-Arc Lavas. J Petrol 41(2):229–256CrossRefGoogle Scholar
  26. Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res (Solid Earth) 102(B7):14991–15019Google Scholar
  27. Feeley TC, Sharp ZD (1995) 18O/16O isotope geochemistry of silicic lava flows erupted from Volcán Ollagüe, Andean Central Volcanic Zone. Earth Planet Sci Lett 133:239–254CrossRefGoogle Scholar
  28. Feig ST, Koepke J, Snow JE (2010) Effect of oxygen fugacity and water on phase equilibria of a hydrous tholeiitic basalt. Contrib Mineral Petrol, doi: 10.1007/s00410-010-0493-3
  29. Garcia MO, Ito E, Eiler JM (2008) Oxygen isotope evidence for chemical interaction of Kilauea Historical Magmas with Basement Rocks. J Petrol 49:757–769CrossRefGoogle Scholar
  30. Greene AR, DeBari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna Arc section, south-central Alaska. J Petrol 47:1051–1093CrossRefGoogle Scholar
  31. Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallisation and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533CrossRefGoogle Scholar
  32. Grove TL, Till CB, Lev E, Chatterjee N, Médard E (2009) Kinematic variables and water transport control the formation and location of arc volcanoes. Nature 459:694–697CrossRefGoogle Scholar
  33. Harford CL, Sparks RSJ (2001) Recent remobilisation of shallow-level intrusions on Montserrat revealed by hydrogen isotope composition of amphiboles. Earth Planet Sci Lett 185:285–297CrossRefGoogle Scholar
  34. Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120:95–114CrossRefGoogle Scholar
  35. Harris C, Stuart Smith H, Le Roex AP (2000) Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough Island lavas: variation with fractional crystallisation and evidence for assimilation. Contrib Mineral Petrol 138:164–175CrossRefGoogle Scholar
  36. Heath E, Macdonald R, Belkin H, Hawkesworth C, Sigurdsson H (1998) Magmagenesis at Soufriere Volcano, St Vincent, Lesser Antilles Arc. J Petrol 39(10):1721–1764CrossRefGoogle Scholar
  37. Holland T, Blundy J (1994) Nonidea interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447CrossRefGoogle Scholar
  38. James DE (1981) The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Ann Rev Earth Planet Sci 9:311–344CrossRefGoogle Scholar
  39. Kohn MJ, Valley JW (1998) Effects of cation substitutions in garnet and pyroxene on equilibrium oxygen isotope fractionations. J Met Geol 16:625–639CrossRefGoogle Scholar
  40. Kyser TK, O’Neil JR (1984) Hydrogen isotope systematic of submarine basalts. Geochim Cosmochim Acta 48:2123–2133CrossRefGoogle Scholar
  41. Larocque J, Canil D (2010) The role of amphibole in the evolution of arc magmas and crust: the case from Jurassic Bonanza arc section, Vancouver Island, Canada. Contrib Mineral Petrol 159:475–492CrossRefGoogle Scholar
  42. Lewis JF (1973) Mineralogy of the ejected plutonic blocks of the Soufriere Volcano St. Vincent: olivine, pyroxene, amphibole and magnetite paragenesis. Contrib Mineral Petrol 38:197–220CrossRefGoogle Scholar
  43. Macdonald R, Hawkesworth CJ, Heath E (2000) The Lesser Antilles volcanic chain: a study in arc magmatism. Earth Sci Rev 49:1–76CrossRefGoogle Scholar
  44. Macpherson CG, Mattey DP (1998) Oxygen isotope variations in Lau Basin lavas. Chem Geol 144:177–194CrossRefGoogle Scholar
  45. Mattey D, Lowry D, Macpherson C (1994) Oxygen isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241CrossRefGoogle Scholar
  46. McDade P, Blundy JD, Wood BJ (2003) Trace element partitioning between mantle wedge peridotite and hydrous MgO-rich melt. Am Mineral 88:1825–1831Google Scholar
  47. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput Geocsci 28:597–604CrossRefGoogle Scholar
  48. Pichavant M, Macdonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol 154:535–558CrossRefGoogle Scholar
  49. Pichavant M, Mysen BO, Macdonald R (2002) Source and H2O content of high-MgO magmas in island arc settings: An experimental study of a primitive calc-alkaline basalt from St. Vincent, Lesser Antilles arc. Geochim Cosmochim Acta 66(12):2193–2209Google Scholar
  50. Putirka KD (2005) Igneous thermometers and barometers based on plagioclase + liquid equilibria: tests of some existing models and new calibrations. Am Mineral 90:336–346CrossRefGoogle Scholar
  51. Robertson REA (2003) The volcanic geology of the pre-Soufrière Rocks of the St. Vincent, West Indies. PhD Thesis, University of the West Indies, TrinidadGoogle Scholar
  52. Romick JD, Kay SM, Kay RW (1992) The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the Central Aleutians, Alaska. Contrib Mineral Petrol 112:101–118CrossRefGoogle Scholar
  53. Ryerson FJ, Durham WB, Cherniak DJ, Lanford WA (1989) Oxygen diffusion in olivine: effect of oxygen fugacity and implications for creep. J Geophy Res (Solid Earth) 94:4105–4118CrossRefGoogle Scholar
  54. Sharp ZD, Atudorei V, Durakiewicz T (2001) A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chem Geol 178:197–210CrossRefGoogle Scholar
  55. Shaw AM, Hauri EH, Fischer TP, Hilton DR, Kelley KA (2008) Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep-Earth water cycle. Earth Planet Sci Lett 275:138–145CrossRefGoogle Scholar
  56. Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166CrossRefGoogle Scholar
  57. Smith TE, Thirlwall MF, Macpherson C (1996) Trace element and isotope geochemistry of the Volcanic Rocks of Bequia, Grenadine Islands, Lesser Antilles Arc: a study of subduction enrichment and itra-crustal Contamination. J Petrol 37(1):117–143CrossRefGoogle Scholar
  58. Streckeisen A (1976) To each plutonic rock its proper name. Earth Sci Rev 12:1–33CrossRefGoogle Scholar
  59. Thirlwall MF, Graham AM, Arculus RJ, Harmon RS, Macpherson CG (1996) Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb-Sr-Nd-O isotope geochemistry of Grenada, Lesser Antilles. Geochim Cosmochim Acta 60(23):4785–4810CrossRefGoogle Scholar
  60. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580CrossRefGoogle Scholar
  61. Van Soest MC, Hilton DR, Macpherson CG, Mattey DP (2002) Resolving sediment subduction and crustal contamination in the Lesser Antilles Island Arc: a combined He-O-Sr isotope approach. J Petrol 43(1):143–170CrossRefGoogle Scholar
  62. Villiger S, Ulmer P, Müntener O, Thompson AB (2004) the liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallisation—an experimental study at 1.0 GPa. J Petrol 45(12):2369–2388Google Scholar
  63. Widom E, Farquhar J (2003) Oxygen isotope signatures in olivines from São Miguel (Azores) basalts: implications for crustal and mantle processes. Chem Geol 193:237–255CrossRefGoogle Scholar
  64. Zellmer GF, Hawkesworth CJ, Sparks RSJ, Thomas LE, Harford CL, Brewer TS, Loughlin SC (2003) Geochemical evolution of the Soufrière Hills Volcano, Montserrat, Lesser Antilles Volcanic Arc. J Petrol 44(8):1349–1374CrossRefGoogle Scholar
  65. Zhao Z, Zheng Y (2003) Calculation of oxygen isotope fractionation in magmatic rocks. Chem Geol 193:59–80CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • P. M. E. Tollan
    • 1
    • 3
    Email author
  • I. Bindeman
    • 2
  • J. D. Blundy
    • 1
  1. 1.Department of Earth SciencesUniversity of BristolBristolUK
  2. 2.Department of Geological SciencesUniversity of OregonEugeneUSA
  3. 3.Department of Earth SciencesDurham UniversityDurhamUK

Personalised recommendations