Contributions to Mineralogy and Petrology

, Volume 163, Issue 1, pp 19–31 | Cite as

Distribution of brine in grain boundaries during static recrystallization in wet, synthetic halite: insight from broad ion beam sectioning and SEM observation at cryogenic temperature

  • Guillaume DesboisEmail author
  • Janos L. Urai
  • Peter A. Kukla
  • Uwe Wollenberg
  • Fabián Pérez-Willard
  • Zsolt Radí
  • Sandor Riholm
Original Paper


We report observations from room temperature static recrystallization experiments (annealing times from minutes to year) of cold-pressed, synthetic, coarse-grained, wet sodium chloride, prepared by broad ion beam polishing and SEM observations at cryogenic temperature to observe directly the brine in grain boundaries. At all stages of annealing, the majority of the brine in the samples is connected in 2D sections along grain boundaries. Another part of the brine is in isolated brine inclusion arrays along grain boundaries and in brine inclusions left behind by migrating brine-filled grain boundaries. Most of these boundaries are mobile because the aggregate is coarsening. We interpret that the boundaries without observable brine films (<15 nm) and brine inclusion arrays are healed and immobile. Evolution of grain boundary structure involves three major processes. First, dissolution on one side of the grain boundary and precipitation on the other side, resulting in grain boundary migration. Second, the development of facets formed by low-index crystallographic planes of the grains bounding the grain boundary brine. When both sides of a grain boundary are able to develop low-index facets in a thick brine film, the resulting impingement boundary is interpreted to be immobile and may prevent the new grain from migrating into a deformed neighbor. When one side of a faceted boundary consists of low-index crystallographic planes and the other side passively follows this faceted shape along irrational surfaces, the boundary is mobile. Third, the healing of grain boundary brine films, producing solid–solid grain boundaries without resolvable brine films.


Static recrystallization Halite BIB-cryo-SEM Brine-filled GB In situ GB microstructures 



We thank the Deutsche Forschungsgemeinschaft for supporting our project and funding the BIB-cryo-SEM instrument (Project UR 64/9-2). We are also grateful to Dr. Georg Koschek, Dr. Christian Jaeger and Mr. Hans-Rolf Schreiber from Carl Zeiss NTS GmbH, and Dr. Sebastian van Offern from Klocke Nanotechnik GmbH for their work to help us to develop the BIB-cryo-SEM instrument. We thank Prof. Dr. F. Michael Meyer from Institut für Mineralogie und Lagerstättenlehre at RWTH Aachen University for hosting the instrument; and Franz Grümmer from the Geological Institute at RWTH Aachen University for his help with installing the instrument.

Supplementary material

410_2011_656_MOESM1_ESM.doc (4.5 mb)
Online Resource 1 (DOC 4643 kb)
410_2011_656_MOESM2_ESM.doc (23.1 mb)
Online Resource 2 (DOC 23672 kb)


  1. Beauprêtre S, Zigone D, Voisin C, Renard F (2010) On the healing rate of a reactive interface. EGU2010-8599Google Scholar
  2. Bérest P, Brouard B, Hévin G (2010) A 12-year cavern abandonment test. In: EPJ Web of Conferences, vol 6, pp 22003–22010Google Scholar
  3. Brantley SL, Evans B, Hickman SH, Crerar DA (1990) Healing of microcracks in quartz: implications for fluid flow. Geology 18:136CrossRefGoogle Scholar
  4. De Meer S, Spiers CJ, Peach CJ, Watanabe T (2002) Diffusive properties of fluid-filled grain boundaries measured electrically during active pressure solution. Earth Planet Sci Lett 200:147–157CrossRefGoogle Scholar
  5. De Meer S, Spiers C, Nakashima S (2005) Structure and diffusive properties of fluid-filled grain boundaries: an in situ study using infrared (micro) spectroscopy. Earth Planet Sci Lett 232:403–414CrossRefGoogle Scholar
  6. De Winter AMD, Schneijdenberg C, Lebbink M, Lich B, Verkleij A, Drury M, Humbel B (2009) Tomography of insulating biological and geological materials using focused ion beam (FIB) sectioning and low-kV BSE imaging. J Microsc 233:372–383CrossRefGoogle Scholar
  7. Den Brok BD, Morel J, Zahid M (2002) In situ experimental study of roughness development at a stressed solid/fluid interface, vol 200. Geological Society, London, Special Publications, pp 73–83. doi: 10.1144/GSL.SP.2001.200.01.05
  8. Desbois G, Urai JL, Burkhardt C, Drury MR, Hayles M, Humbel B (2008) Cryogenic vitrification and 3D serial sectioning using high resolution cryo-FIB SEM technology for brine-filled grain boundaries in halite: first results. Geofluids 8:60–72CrossRefGoogle Scholar
  9. Desbois G, Urai JL, Kukla PA (2009) Morphology of the pore space in claystones—evidence from BIB/FIB ion beam sectioning and cryo-SEM observations. eEarth 4:15–22CrossRefGoogle Scholar
  10. Desbois G, Zavada P, Schleder Z, Urai JL (2010) Deformation and recrystallization mechanisms in naturally deformed salt fountain: microstructural evidence for a switch in deformation mechanisms with increased availability of meteoric water and decreased grain size (Qum Kuh, central Iran). J Struct Geol 32(4):580–594CrossRefGoogle Scholar
  11. Drury M, Urai J (1990) Deformation-related recrystallization processes. Tectonophysics 172:235–253CrossRefGoogle Scholar
  12. Fujiwara K, Tsumura S, Tokairin M, Kutsukake K, Usami N, Uda S, Nakajima K (2009) Growth behavior of faceted Si crystals at grain boundary formation. J Cryst Growth 312(1):19–23Google Scholar
  13. Ghoussoub J, Leroy YM (2001) Solid–fluid phase transformation within grain boundaries during compaction by pressure solution. J Mech Phys Solids 49:2385–2430CrossRefGoogle Scholar
  14. Gratier J (1993) Experimental pressure solution of Halite by an indenter technique. Geophys Res Lett 20:1647CrossRefGoogle Scholar
  15. Hartman P, Perdok WG (1955) On the relations between structure and morphology of crystals. I Acta Crystallogr 8:49–52Google Scholar
  16. Heidug WK, Leroy YM (1994) Geometrical evolution of stressed and curved solid–fluid phase boundaries 1. Transformation kinetics. J Geophys Res 99:505–515CrossRefGoogle Scholar
  17. Hickman SH, Evans B (1991) Experimental pressure solution in halite: the effect of grain/interphase boundary structure. J Geol Soc 148:549–560CrossRefGoogle Scholar
  18. Hickman SH, Evans B (1995) Kinetics of pressure solution at halite-silica interfaces and intergranular clay films. J Geophys Res 100:13113CrossRefGoogle Scholar
  19. Hippert J, Egydio-Silva M (1996) New polygonal grains formed by dissolution–redeposition in quartz mylonite. J Struct Geol 18:1345–1352CrossRefGoogle Scholar
  20. Holness M, Lewis S (1997) The structure of the halite-brine interface inferred from pressure and temperature variations of equilibrium dihedral angles in the halite-H2O–CO2 system. Geochim Cosmochim Acta 61:795–804CrossRefGoogle Scholar
  21. Holzer L, Cantoni M (2011) Review of FIB-tomography. In: Utke I, Moshkalev S, Russell Ph (eds) Nanofabrication using focused ion and electron beams: principles and applications. Oxford University Press, NY. ISBN 9780199734214Google Scholar
  22. Holzer L, Gasser P, Kaech A, Wegmann M, Zingg A, Wepf R, Muench B (2007) Cryo-FIB-nanotomography for quantitative analysis of particle structures in cement suspensions. J Microsc 227:216–228CrossRefGoogle Scholar
  23. Holzer L, Münch B, Rizzi M, Wepf R, Marschall P, Graule T (2010) 3D-microstructure analysis of hydrated bentonite with cryo-stabilized pore water. Appl Clay Sci 47:330–342CrossRefGoogle Scholar
  24. Hudec M, Jackson M (2007) Terra infirma: understanding salt tectonics. Earth-Sci Rev 82:1–28CrossRefGoogle Scholar
  25. Humphreys J, Hatherly M (1996) Recrystallization and related annealing phenomena, Reprinted with corr. ed. Pergamon, Oxford [u.a.]Google Scholar
  26. Langer M (1993) Use of solution-mined caverns in salt for oil and gas storage and toxic waste disposal in Germany. Eng Geol 35:183–190CrossRefGoogle Scholar
  27. Lehner F (1995) A model for intergranular pressure solution in open systems. Tectonophysics 245:153–170CrossRefGoogle Scholar
  28. Littke R, Bayer U, Gajewski D, Nelskamp S (2008) Dynamics of complex intracontinental Basins—The Central European Basin System. Springer, Berlin–Heidelberg, ISBN: 978-3-540-85084-7Google Scholar
  29. Lohkaemper THK, Jordan G, Costamagna R, Stoeckhert B, Schmahl WW (2003) Phase shift interference microscope study of dissolution-precipitation processes of nonhydrostatically stressed halite crystals in solution. Contrib Mineral Petrol 146:263–274CrossRefGoogle Scholar
  30. Loucks RG, Reed RM, Ruppel SC, Jarvie DM (2009) Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. J Sediment Res 79:848–861CrossRefGoogle Scholar
  31. Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin, New YorkGoogle Scholar
  32. Pincus H (1985) Underground storage of oil and gas in salt deposits and other non-hard rocks. Earth-Sci Rev 22:238–239CrossRefGoogle Scholar
  33. Renard F, Bernard D, Thibault X, Boller E (2004) Synchrotron 3D microtomography of halite aggregates during experimental pressure solution creep and evolution of the permeability. Geophys Res Lett 31:L07607. doi: 10.1029/2004GL019605
  34. Schenk O, Urai JL (2004) Microstructural evolution and grain boundary structure during static recrystallization in synthetic polycrystals of Sodium Chloride containing saturated brine. Contrib Mineral Petrol 146:671–682CrossRefGoogle Scholar
  35. Schenk O, Urai JL (2005) The migration of fluid-filled grain boundaries in recrystallizing synthetic bischofite: first results of in situ high-pressure, high-temperature deformation experiments in transmitted light. J Metamorph Geol 23:695–709CrossRefGoogle Scholar
  36. Schenk O, Urai JL, Piazolo S (2006) Structure of grain boundaries in wet, synthetic polycrystalline, statically recrystallizing halite—evidence from cryo-SEM observations. Geofluids 6:93–104CrossRefGoogle Scholar
  37. Schléder Z, Urai JL (2005) Microstructural evolution of deformation-modified primary halite from the Middle Triassic Röt Formation at Hengelo, The Netherlands. Int J Earth Sci (Geol Rundsch) 94:941–955Google Scholar
  38. Schmatz J, Schenk O, Urai JL (2010) The interaction of migrating grain boundaries and fluid inclusions in rock analogues: the effect of wetting angle and fluid inclusion velocity. Contrib Mineral Petrol. 162(1):193–208. doi: 10.1007/s00410-010-0590-3
  39. Schoenherr J, Urai J, Kukla PA, Littke R, Schleder Z, Larroque J-M, Newall M, Al-Abry N, Al-Siyabi H, Rawahi Z (2007) Limits to the sealing capacity of rocksalt: a case study of the Infra-Cambrian Ara Salt from the South Oman Salt Basin. AAPG Bull 91(11):1541–1557CrossRefGoogle Scholar
  40. Spiers CJ, Schutjens PMTM (1999) Intergranular pressure solution in Nacl: grain-to-grain contact experiments under the optical microscope. Oil Gas Sci Technol Rev IFP 54:729–750CrossRefGoogle Scholar
  41. Spiers CJ, Urai JL, Lister GS, Boland JN, Zwart HJ (1986) The influence of fluid rock interaction on the rheology of salt rock and on ionic transport in the salt. Nuclear Science and Technology EUR 10399 EN, Luxembourg, p 131 Google Scholar
  42. Spiers CJ, Brzesowskry RH, Peach CJ, Liezenberg JL, Zwart HJ (1990) Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In: Knipe RJ, Ruitter EH (eds) Deformation mechanisms, rheology, and tectonics, vol 54. Geological Society, London, Special Publication, pp 215–227. doi: 10.1144/GSL.SP.1990.054.01.21
  43. Staudtmeister K, Rokahr R (1997) Rock mechanical design of storage caverns for natural gas in rock salt mass. Int J Rock Mech Min Sci 34:300.e1–300.e13CrossRefGoogle Scholar
  44. Urai JL, Means WD, Lister GS (1986a) Dynamic recrystallization of minerals. In: Hobbs, B. E., Heard, H. C. (Eds.), Mineral and Rock Deformation: Laboratory Studies - The Paterson Volume. American Geophysical Union, Geophysical Monograph 36:161–199Google Scholar
  45. Urai JL, Spiers CJ, Zwart HJ, Lister GS (1986b) Weakening of rock salt by water during long-term creep. Nature 324:554–557CrossRefGoogle Scholar
  46. Urai JL, Schléder Z, Spiers C, Kukla PA (2008) Flow and transport properties of salt rocks. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins: The Central European Basin System. Springer, Berlin, Heidelberg 277-290.978-3-540-85084-7Google Scholar
  47. Van Noort R, Spiers CJ, Peach CJ (2006) Effects of orientation on the diffusive properties of fluid-filled grain boundaries during pressure solution. Phys Chem Miner 34:95–112CrossRefGoogle Scholar
  48. Van Noort R, Visser HJM, Spiers CJ (2008) Influence of grain boundary structure on dissolution controlled pressure solution and retarding effects of grain boundary healing. J Geophys Res 113:B03201. doi: 10.1029/2007JB005223
  49. Visser HJM (1999) Mass transfer processes in crystalline aggregates containing a fluid phase. PhD thesis, Universiteit Utrecht, 244 ppGoogle Scholar
  50. Watanabe T, Peach CJ (2002) Electrical impedance measurement of plastically deforming halite rocks at 125°C and 50 MPa. J Geophys Res (Solid Earth) 107:B1. doi: 10.1029/2001JB000204

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Guillaume Desbois
    • 1
    Email author
  • Janos L. Urai
    • 1
  • Peter A. Kukla
    • 2
  • Uwe Wollenberg
    • 2
  • Fabián Pérez-Willard
    • 3
  • Zsolt Radí
    • 4
  • Sandor Riholm
    • 4
  1. 1.Structural Geology, Tectonics and GeomechanicsRWTH Aachen UniversityAachenGermany
  2. 2.Geological InstituteRWTH Aachen UniversityAachenGermany
  3. 3.Carl Zeiss NTS GmbHOberkochenGermany
  4. 4.Technoorg–Linda Ltd.CoBudapestHungary

Personalised recommendations