Advertisement

Contributions to Mineralogy and Petrology

, Volume 162, Issue 5, pp 995–1009 | Cite as

Insights into the origin of primitive silica-undersaturated arc magmas of Aoba volcano (Vanuatu arc)

  • Fanny SorbadereEmail author
  • Pierre Schiano
  • Nicole Métrich
  • Esline Garaebiti
Original Paper

Abstract

Aoba picrites in Vanuatu arc (Southwestern Pacific) offer the opportunity to address the question of the origin of Si-undersaturated arc magmas, through the geochemical study of their olivine-hosted melt inclusions. These latter delineate a differentiation trend of calc-alkaline silica-undersaturated basalts, with typical trace-element patterns of arc magmas. The most primitive melt inclusions, preserved in olivines with Fo ≥ 89, have normative nepheline compositions with CaO/Al2O3 > 0.8, but belong to three distinct populations differing in their enrichment or depletion in LILE, Cl, and alkalis (Rb, K). The dominant population is characterized by medium-LILE concentrations (La/Yb ~ 7–8) and represents the parental magma of the Aoba lavas. The two others (La/Yb ~ 20 and 2) are either significantly enriched or extremely depleted in LILE, Cl, and alkalis. This compositional variability of primitive magma batches requires the multi-stage mixing between melts generated by partial melting of both peridotite and clinopyroxene-rich lithologies. Medium-LILE magma derives from the mixing between peridotite- and clinopyroxenite-derived melts, whereas the high- and low-LILE melts involve amphibole-bearing and amphibole-free clinopyroxenite sources, respectively.

Keywords

Picrite Vanuatu arc Aoba Island Si-undersaturated melts Melt inclusions 

Notes

Acknowledgments

We are grateful to Ph. Bani and A. Bertagnini for their kind help in sample collection, J-L Devidal for microprobe and LA-ICP-MS analyses, M. Mercier for Raman spectroscopy analyses, M. le Voyer and C. Dalou for personal communications. Two anonymous reviews greatly improved our manuscript. This work was supported by the ANR contracts ANR-06-CATT-02 Arc-Vanuatu.

Supplementary material

410_2011_636_MOESM1_ESM.xls (108 kb)
Supplementary material 1 (XLS 108 kb)

References

  1. Adam JD (1987) Hydrous and CO2-bearing liquidus phase relationships in the CMAS system at 28 kb, and their bearing on the origin of alkalis basalts. J Geol 96:709–719CrossRefGoogle Scholar
  2. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827CrossRefGoogle Scholar
  3. Bergeot N, Bouin MN, Diament M, Pelletier B, Régnier M, Calmant S, Ballu V (2009) Horizontal and vertical interseismic velocity in the Vanuatu subduction zone from GPS measurements: evidence for a central Vanuatu locked zone. J Geophys Res 114Google Scholar
  4. Brey G (1977) Origin of olivine melilitites—chemical and experimental constraints. J Volcanol Geotherm Res 3:61–88CrossRefGoogle Scholar
  5. Brey G, Green DH (1977) Systematic study of liquidus phase relations in olivine melilite + H2O + CO2 at high pressures and petrogenesis of an olivine melilite magma. Contrib Mineral Petrol 61:141–162CrossRefGoogle Scholar
  6. Brey G, Brice WR, Ellis DJ, Green DH, Harris KL, Ryabchikov ID (1983) Pyroxene-carbonate reactions in the upper mantle. Earth Planet Sci Lett 62:63–74CrossRefGoogle Scholar
  7. Carignan J, Hild P, Mevelle G, Morel J, Yeghicheyan D (2001) Routine analyses of trace elements in geological samples using flow injection and low pressure on-line liquid chromatography coupled to ICP-MS: a study of geochemical reference materials BR, DR-N, UB-N, AN-G and GH. Geostandards Newslett 25:187–198CrossRefGoogle Scholar
  8. Dalou C, Koga KT, Shimizu N (2010) Fluorine and chlorine behaviour in mantle wedge, new implications for slab component. AGU Fall meeting Abstract V34c-06, 2010Google Scholar
  9. Dalton J, Presnall DC (1998) The continuum of primary carbonatitic-kimberlitic melt compositions in equilibrium with lherzolites: data from the system CMAS-CO2 at 6 GPa. J Petrol 39:1953–1964CrossRefGoogle Scholar
  10. Daniel J, Gérard M, Mauffredt A et al (1989) Déformation compressive d’un bassin intra-arc dans un contexte de collision ride-arc : le bassin d’Aoba, arc des Nouvelles-Hébrides. Compte-rendu Acad Sci Paris 38:239–245Google Scholar
  11. Danyushevsky LV, Della-Pasqua FN, Sokolov S (2000) Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib Mineral Petrol 138:68–83CrossRefGoogle Scholar
  12. Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24CrossRefGoogle Scholar
  13. Danyushevsky LV, Leslie RAJ, Crawford AJ, Durance P (2004) Melt inclusions in the primitive olivine phenocrysts: the role of localized reactions processes in the origin of anomalous compositions. J Petrol 45:2531–2553CrossRefGoogle Scholar
  14. Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic Ocean Island Basalts. J Petrol 48:2093–2124CrossRefGoogle Scholar
  15. Davidson JP (1996) Deciphering mantle and crustal signatures in subduction zone magmatism. In: GE Bebout, DW Scholl, SH Kirby, JP Plat (eds) Subduction top to bottom, AGU Geophys Monograph 96. Washington DC, pp 251–262Google Scholar
  16. Della-Pasqua F, Varne R (1997) Primitive ankaramitic magmas in volcanic arcs: a melt-inclusion approach. Can Mineral 35:291–312Google Scholar
  17. Downes H (2007) Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos 99:1–24CrossRefGoogle Scholar
  18. Eggins SM (1993) Origin and differentiation of picritic arc magmas, Ambae (Aoba), Vanuatu. Contrib Mineral Petrol 114:79–100CrossRefGoogle Scholar
  19. Eggler DH (1978) The effect of CO2 upon partial melting of peridotite in the system Na2O–CaO–Al2O3–MgO–SiO2–CO2 to 35 kb, with an analysis of melting in a peridotite-H2O–CO2 system. Am J Sci 278:305–343CrossRefGoogle Scholar
  20. Elburg MA, Kamenetsky VS, Foden JD, Sobolev A (2007) The origin of medium-K ankaramitic arc magmas from Lombok (Sunda arc, Indonesia): mineral and melt inclusion evidence. Chem Geol 240:260–279CrossRefGoogle Scholar
  21. Falloon TJ, Green DH, Hatton CJ, Harris KL (1988) Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J Petrol 29:1257–1282Google Scholar
  22. Falloon TJ, Danyushevky LV, Green DH (2001) Peridotite melting at 1 GPa: reversal experiments on partial melt compositions produced by peridotite-basalt sandwich experiments. J Petrol 42:2363–2390CrossRefGoogle Scholar
  23. Forneris JF, Holloway JR (2003) Phase equilibria in subducting basaltic crust: implications for H2O release from the slab. Earth Planet Sci Lett 214:187–201CrossRefGoogle Scholar
  24. Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19:463–513Google Scholar
  25. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346CrossRefGoogle Scholar
  26. Gaetani GA, Grove TL (2003) Experimental constraints on melt generation in the mantle wedge. In: J Eiler (ed) Inside the subduction factory, AGU Geophys Monograph 138, Washington DC, pp 107–134Google Scholar
  27. Gaetani GA, Watson EB (2002) Open system behavior of olivine-hosted melt inclusions. Earth Planet Sci Lett 183:27–41CrossRefGoogle Scholar
  28. Gaetani GA, O’Leary JA, Shimizu N (2009) Mechanisms and timescales for reequilibration of water in olivine-hosted melt inclusions. AGU fall meeting abstract #V51E-1770Google Scholar
  29. Gagnon J, Fryer BJ, Samson IM, Williams-Jones AE (2008) Quantitative analysis of certified reference materials by LA-ICP-MS and without an internal standard. J Anal Atom Spectr 23:1529–1537CrossRefGoogle Scholar
  30. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes. 4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212CrossRefGoogle Scholar
  31. Gill JB (1981) Orogenic andesites and plate tectonics. Miner Rocks 16:112–116Google Scholar
  32. Green DH, Falloon TJ, Taylor WR (1987) Mantle-derived magmas—roles of variable source peridotite and variable C-H-O fluid compositions. In:BO Mysen (ed) Magmatic process: Physicochemical Principles Geochem Soc spec Publ 1:139–154Google Scholar
  33. Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt Shasta region, N California. Contrib Mineral Petrol 142:375–396Google Scholar
  34. Hermann J, Rubatto D (2009) Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem Geol 265:512–526CrossRefGoogle Scholar
  35. Hirose K, Kawamoto T (1995) Hydrous partial melting of lherzolite at 1 GPa: the effect of H2O on the genesis of basaltic magmas. Earth Planet Sci Lett 133:463–473CrossRefGoogle Scholar
  36. Hirose K, Kushiro I (1993) Partial melting of dry peridotite at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489CrossRefGoogle Scholar
  37. Hirschmann MM, Ghiorso MS, Wasylenki LE, Asimow PD, Stolper EM (1998) Calculation of peridotite partial melting from thermodynamic models of minerals and melts. J Petrol 39:1091–1115CrossRefGoogle Scholar
  38. Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481–484CrossRefGoogle Scholar
  39. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  40. Irvine TN (1973) Petrology of the Duke Island ultramafic complex, southeastern Alaska. Geol Soc Amer Mem 138:313–335Google Scholar
  41. Jarosewich E, Parkes AS, Wiggins LB (1979) Microprobe analyses of four natural glasses and one mineral: an interlaboratory study of precision and accuracy. Smithsonian Contrib Earth Sci 22:53–67Google Scholar
  42. Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW (2006) MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochim Geophys Geosys 7. doi: 10.1029/2005GC001060
  43. Kamenetsky VS, Elburg M, Arculus R, Thomas R (2006) Magmatic origin of low-Ca olivine in subduction-related magmas: co-existence of contrasting magmas. Chem Geol 233:346–357CrossRefGoogle Scholar
  44. Kennedy AK, Grove TL, Johnson RW (1990) Experimental and major element constraints on the evolution of lavas from Lihir Island, Papua New Guinea. Contrib Mineral Petrol 104:722–734CrossRefGoogle Scholar
  45. Kogiso T, Hirschmann MM (2001) Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib Mineral Petrol 142:347–360CrossRefGoogle Scholar
  46. Kushiro I (1996) Partial Melting of a fertile mantle peridotite at high pressures: an experimental study using aggregates of diamond. In: A Basu, SR Hart (eds) Earth processes: reading isotopic code. AGU Geophys Monogr 95: 109–122Google Scholar
  47. Lambart S, Laporte D, Schiano P (2009) An experimental study of pyroxenite partial melts at 1 and 15 GPa: implications for the major-element composition of Mid-Ocean Ridge Basalts. Earth Planet Sci Lett 288:335–347CrossRefGoogle Scholar
  48. Laporte D, Toplis MJ, Seyler M, Devidal JL (2004) A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib Mineral Petrol 146:463–484CrossRefGoogle Scholar
  49. Laubier M, Schiano P, Doucelance R, Ottolini L, Laporte D (2007) Olivine-hosted melt inclusions and melting processes beneath the FAMOUS zone (Mid-Atlantic Ridge). Chem Geol 240:129–150CrossRefGoogle Scholar
  50. Louat R, Hamberger M, Monzier M (1988) Shallow and intermediate depth seismicity in the New Hebrides arc, constraints on the subduction process In Greene HG, Wong FL Geology and offshore resources of the Pacific island arcs—Vanuatu region Circum Pacific council for energy and mineral resources. Earth Sci Ser 8:329–356Google Scholar
  51. Marchev P, Georgiev S, Zajacz Z, Manetti P, Raicheva R, Von Quadt A, Tommasini S (2009) High-K ankaramitic melt inclusions and lavas in the Upper Cretaceous Eastern Srednogorie continental arc, Bulgaria: implication for the genesis of arc shoshonites. Lithos 113:228–245CrossRefGoogle Scholar
  52. Médard E, Schmidt MW, Schiano P, Ottolini L (2006) Melting of amphibole-bearing wehrlites: an experimental study on the origin of ultra-calcic nepheline-normative melts. J Petrol 47:481–504CrossRefGoogle Scholar
  53. Mercier M, Di Muro A, Giordano D, Métrich N, Lesne P, Pichavant M, Scaillet B, Clocchiatti R, Montagnac G (2009) Influence of glass polymerisation and oxidation on micro-Raman water analysis in alumino-silicate glasses. Geochim Cosmochim Acta 73:197–217CrossRefGoogle Scholar
  54. Métrich N, Wallace PJ (2008) Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev Mineral Geochem 69:363–402CrossRefGoogle Scholar
  55. Monzier M, Robin C, Eissen JP, Cotton J (1997) Geochemistry vs. seismo-tectonics along the volcanic New Hebrides Central Chain (Southwest Pacific). J Volcanol Geotherm Res 78:1–29CrossRefGoogle Scholar
  56. Mysen BO, Boettcher A (1975) Melting of a hydrous mantle: II. Geochemistry of crystals and liquids formed by anatexis of mantle peridotite at high pressure and high temperatures as a function of controlled activities of water, hydrogen and carbon dioxide. J Petrol 16:549–593Google Scholar
  57. O’Hara MJ (1972) Data reduction and projection schemes for complex compositions third progress report of research supported by NERC at Edinburgh and Manchester Universities. pp 103–126Google Scholar
  58. Pascal G, Isacks BL, Barazangi M, Dubois J (1978) Precise relocations of earthquakes and seismotectonics of the New Hebrides island arc. J Geophys Res 83:4957–4973CrossRefGoogle Scholar
  59. Peccerillo P, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkek. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  60. Pelletier B, Calmant S, Pillet R (1998) Current tectonics of the Tonga-New Hebrides region. Earth Planet Sci Lett 164:263–276CrossRefGoogle Scholar
  61. Pickering-Witter J, Johnston AD (2000) The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib Mineral Petrol 140:190–211CrossRefGoogle Scholar
  62. Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919CrossRefGoogle Scholar
  63. Portnyagin M, Almeev R, Matveev S, Holtz F (2008) Experimental evidence for rapid water exchange between melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53–69CrossRefGoogle Scholar
  64. Raos AM, Crawford AJ (2004) Basalts from the Efate Island Group, central section of the Vanuatu arc, SW Pacific: geochemistry and petrogenesis. J Volcanol Geotherm Res 134:35–56CrossRefGoogle Scholar
  65. Reverdatto VV, Selyatitskiy AY, Carswell DA (2008) Geochemical distinctions between “crustal” and mantle-derived peridotites/pyroxenites in high/ultrahigh pressure metamorphic complexes. Rus Geol Geophys 49:73–90CrossRefGoogle Scholar
  66. Rohrbach A, Schuth S, Ballhaus C, Münker C, Matveev S, Qopoto C (2005) Petrological constraints on the origin of arc picrites, New Georgia Group, Solomon Islands. Contrib Mineral Petrol 149:685–698CrossRefGoogle Scholar
  67. Schiano P, Eiler JM, Hutcheon ID, Stolper EM (2000) Primitive CaO-rich, silica-undersaturated melts in island arc: evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochim Geophys Geosys 1. doi: 10.1029/1999GC000032
  68. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379CrossRefGoogle Scholar
  69. Schmidt MW, Green DH, Hiberson WO (2004) Ultra-calcic magmas generated from Ca-depleted mantle: an experimental study on origin of Ankaramites. J Petrol 45:531–554CrossRefGoogle Scholar
  70. Schuth S, Rohrbach A, Münker C, Ballhaus C, Garbe-Schönberg D, Qopoto C (2004) Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia Group, Solomon Islands. Contrib Mineral Petrol 148:288–304CrossRefGoogle Scholar
  71. Schwab BE, Johnston AD (2001) Melting systematics of modally variable, compositionally intermediate peridotites and the effect of mineral fertility. J Petrol 42:1789–1811CrossRefGoogle Scholar
  72. Stormer JC (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron-titanium oxides. Amer Mineral 68:586–594Google Scholar
  73. Straub SM, Layne GD (2003) The systematics of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203CrossRefGoogle Scholar
  74. Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of fluid phase released from a subducted lithosphere and origin of arc magmas: evidence from high-pressure experiments and natural rocks. J Volcanol Geotherm Res 29:293–309CrossRefGoogle Scholar
  75. Thirlwall MF, Graham AM, Arculus RJ, Harmon S, Macpherson CG (1996) Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: Pb–Sr–Nd–O isotope geochemistry of Grenada, Lesser Antilles. Geochim Cosmochim Acta 60:4785–4810CrossRefGoogle Scholar
  76. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39CrossRefGoogle Scholar
  77. Van Achterbergh E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for La-ICP-MS. In: Sylvester P (ed) Laser ablation ICP-MS in earth science principles and applications. Mineralogical Association of Canada, Canada, pp 239–243Google Scholar
  78. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240CrossRefGoogle Scholar
  79. Wallace PJ, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335:343–346CrossRefGoogle Scholar
  80. Walter M (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60CrossRefGoogle Scholar
  81. Warden AJ (1970) Evolution of Aoba caldera volcano, New Hebrides. Bull Volcanol 34:107–140CrossRefGoogle Scholar
  82. Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44:1163–1191CrossRefGoogle Scholar
  83. Wyllie PJ (1967) Ultramafic and related rocks. Wiley, New YorkGoogle Scholar
  84. Wysoczanski RJ, Wright IJ, Gamble JA, Luhr JF, Handler MR (2005) Volatile contents of Kermadec Arc-Havre trough pillow glasses: fingerprinting slab-derived aqueous fluids in mantle sources of arc and back-arc lavas. J Volcanol Geotherm Res 152:51–73CrossRefGoogle Scholar
  85. Yoder HS, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–532Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Fanny Sorbadere
    • 1
    • 2
    Email author
  • Pierre Schiano
    • 1
    • 2
  • Nicole Métrich
    • 3
  • Esline Garaebiti
    • 4
  1. 1.Clermont Université, Université Blaise Pascal, Laboratoire Magmas et VolcansClermont-FerrandFrance
  2. 2.CNRS, UMR 6524 and IRDClermont-FerrandFrance
  3. 3.Institut de Physique du Globe, UMR CNRS 7154, Sorbonne Paris-CitéUniversité Paris DiderotParis cedex 05France
  4. 4.Department of Meteorology and GeohazardsPort VilaVanuatu

Personalised recommendations