Advertisement

Contributions to Mineralogy and Petrology

, Volume 162, Issue 4, pp 675–689 | Cite as

Influence of subsolidus processes on the chromium number in spinel in ultramafic rocks

  • Martin VoigtEmail author
  • Anette von der Handt
Original Paper

Abstract

The chromium number of spinel Cr#sp (atomic ratio of Cr/(Cr+Al)) is an important geochemical parameter for the estimation of the degree of partial melting, temperatures, and provenance in peridotites. In this study, a model has been developed in order to determine the effect of subsolidus reactions on the Cr#sp in ultramafic rocks. The final model includes temperature-dependent distribution coefficients of relevant reactions as well as solubility data and has been applied to lithologies common in mid-ocean ridge settings. Significant changes in the Cr#sp are predicted from the application of this model during cooling from 1300 to 800°C at mantle pressures. For spinel lherzolites and harzburgites, the Cr#sp is predicted to decrease proportional to the absolute values of the Cr#sp at (constantly) increasing spinel mass. Cpx-dunites show the same trend, although to a lower extent. Websterites show a different behavior with a slight increase in the Cr#sp due to their lack of olivine. Modal abundance of spinel correlates with the magnitude in Cr#sp change, too. Finally, these results were tested for possible effects on the calculated degree of partial melting as function of the Cr#sp. Application of the Cr#sp from a peridotite equilibrated down to 800°C would result in an underestimation of only 1.5 % in the degree of melting, justifying the use of Cr#sp for estimations of this parameter.

Keywords

Chromium number Spinel Ultramafic rocks Partial melting Mid-ocean ridges 

Notes

Acknowledgments

We would like to thank Zoran Jovanovic for discussion. Helpful comments from Dmitri Ionov and an anonymous reviewer are greatfully acknowledged.

References

  1. Allan JF, Sack RO, Batiza R (1988) Cr-rich spinels as petrogenetic indicators; MORB-type lavas from the Lamont seamount chain, eastern Pacific. Am Mineral 73(7-8):741–753Google Scholar
  2. Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1132Google Scholar
  3. Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58(13):2811–2827CrossRefGoogle Scholar
  4. Barnes SJ, Roeder PL (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42(12):2279–2302CrossRefGoogle Scholar
  5. Bodinier JL, Dupuy C, Dostal J, Merlet C (1987) Distribution of trace transition elements in olivine and pyroxenes from ultramafic xenoliths; application of microprobe analysis. Am Mineral 72(9–10):902–913Google Scholar
  6. Boudier F, Nicolas A (1995) Nature of the Moho transition zone in the Oman ophiolite. J Petrol 36(3):777–796Google Scholar
  7. Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31(6):1353–1378Google Scholar
  8. Cipriani A, Bonatti E, Brunelli D, Ligi M (2009) 26 million years of mantle upwelling below a segment of the Mid Atlantic Ridge: the Vema Lithospheric Section revisited. Earth Planet Sci Lett 285(1–2):87–95CrossRefGoogle Scholar
  9. Coogan LA, Jenkin GRT, Wilson RN (2007) Contrasting cooling rates in the lower oceanic crust at fast- and slow-spreading ridges revealed by geospeedometry. J Petrol 48(11):1–22CrossRefGoogle Scholar
  10. Dantas C, Ceuleneer G, Gregoire M, Python M, Freydier R, Warren J, Dick HJB (2007) Pyroxenites from the Southwest Indian Ridge, 9−16°E: cumulates from incremental melt fractions produced at the top of a cold melting regime. J Petrol 48(4):646–660CrossRefGoogle Scholar
  11. Deer WA, Howie RA, Zussman J (1996) An introduction to the rock-forming minerals, 2nd edn. Prentice-Hall, LondonGoogle Scholar
  12. Dennis JE Jr, Schnabel RB (1996) Numerical methods for unconstrained optimization and nonlinear equations, 16th edn. Society for Industrial and Applied Mathematics, PhiladelphiaGoogle Scholar
  13. Dick HJB (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: Saunders AD, Norry MJ (eds) Magmatism in the Oceanic Basins, vol 42. Geological Society of London Special Publications, London, pp 71–105Google Scholar
  14. Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86(1):54–76CrossRefGoogle Scholar
  15. Dick HJB, Fisher RL, Bryan WB (1984) Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet Sci Lett 69:88–106CrossRefGoogle Scholar
  16. Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426(6965):405–412CrossRefGoogle Scholar
  17. Engi M (1983) Equilibria involving Al-Cr spinel: Mg-Fe exchange with olivine. Experiments, thermodynamic analysis, and consequences for geothermometry. Am J Sci 283(A):29–71Google Scholar
  18. Fabriès J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69(4):329–336CrossRefGoogle Scholar
  19. Falloon TJ, Green DH, Danyushevsky LV, Faul UH (1999) Peridotite melting at 1.0 and 1.5 GPa: an experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts. J Petrol 40(9):1343–1375CrossRefGoogle Scholar
  20. Franz L, Seifert W, Kramer W (1997) Thermal evolution of the mantle underneath the Mid-German crystalline rise: evidence from mantle xenoliths from the Rhön area (Central Germany). Mineral Petrol 61(1):1–25CrossRefGoogle Scholar
  21. Ganguly J (2008) Thermodynamics in earth and planetary sciences. Springer, BerlinCrossRefGoogle Scholar
  22. Gasparik T, Newton RC (1984) The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO–Al2O3–SiO2. Contrib Mineral Petrol 85:186–196CrossRefGoogle Scholar
  23. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212CrossRefGoogle Scholar
  24. Harvey J, Gannoun A, Burton KW, Rogers NW, Alard O, Parkinson IJ (2006) Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet Sci Lett 244(3–4):606–621CrossRefGoogle Scholar
  25. Hellebrand E, Snow JE (2003) Deep melting and sodic metasomatism underneath the highly oblique-spreading Lena Trough (Arctic Ocean). Earth Planet Sci Lett 216(3):283–299CrossRefGoogle Scholar
  26. Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681CrossRefGoogle Scholar
  27. Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ’residual’ abyssal peridotites from the Central Indian Ridge. J Petrol 43(12):2305–2338CrossRefGoogle Scholar
  28. Hellebrand E, Snow JE, Mostefaoui S, Hoppe P (2005) Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge: a SIMS and NanoSIMS study. Contrib Mineral Petrol 150(5):486–504CrossRefGoogle Scholar
  29. Hervig RL, Smith JV (1982) Temperature-dependent distribution of Cr between olivine and pyroxenes in lherzolite xenoliths. Contrib Mineral Petrol 81(3):184–189CrossRefGoogle Scholar
  30. Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16(3):309–343CrossRefGoogle Scholar
  31. Ionov DA (2007) Compositional variations and heterogeneity in fertile lithospheric mantle: peridotite xenoliths in basalts from Tariat, Mongolia. Contrib Mineral Petrol 154(4):455–477CrossRefGoogle Scholar
  32. Ionov DA, Prikhodko VS, Bodinier JL, Sobolev AV, Weis D (2005) Lithospheric mantle beneath the south-eastern Siberian craton: petrology of peridotite xenoliths in basalts from the Tokinsky Stanovik. Contrib Mineral Petrol 149(6):647–665CrossRefGoogle Scholar
  33. Irvine TN (1965) Chromian spinel as a petrogenetic indicator: part 1. Theory Can J Earth Sci 2(6):648–672CrossRefGoogle Scholar
  34. Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73(3):287–310CrossRefGoogle Scholar
  35. Jean MM, Shervais J, Choi SH, Mukasa S (2010) Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: an LA–ICP–MS study. Contrib Mineral Petrol 159(1):113–136CrossRefGoogle Scholar
  36. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95(B3):2661–2678CrossRefGoogle Scholar
  37. Katz RF, Spiegelman M, Langmuir CH (2003) A new parameterization of hydrous mantle melting. Geochem Geophys Geosyst 4(9):1073–1092CrossRefGoogle Scholar
  38. Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375(6534):747–753CrossRefGoogle Scholar
  39. Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 2. applications. J Geophys Res 97(B5):6907–6926CrossRefGoogle Scholar
  40. Klein EM (2003) Geochemistry of the igneous oceanic crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3: the crust. Elsevier, Amsterdam, pp 433–463CrossRefGoogle Scholar
  41. Klein EM, Langmuir CH (1987) Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J Geophys Res 92(B8):8089–8115CrossRefGoogle Scholar
  42. Klemme S, O’Neill HStC (2000) The effect of Cr on the solubility of Al in orthopyroxene: experiments and thermodynamic modelling. Contrib Mineral Petrol 140(1):84–98CrossRefGoogle Scholar
  43. Liermann HP, Ganguly J (2002) Diffusion kinetics of Fe2+ and Mg in aluminous spinel: experimental determination and applications. Geochim Cosmochim Acta 66(16):2903–2913CrossRefGoogle Scholar
  44. Liermann HP, Ganguly J (2003) Fe2+–Mg fractionation between orthopyroxene and spinel: experimental calibration in the system FeO–MgO–Al2O3 –Cr2O3–SiO2, and applications. Contrib Mineral Petrol 145(2):217–227CrossRefGoogle Scholar
  45. Liermann HP, Ganguly J (2007) Fe2+–Mg fractionation between orthopyroxene and spinel: experimental calibration in the system FeO–MgO–Al2O3 –Cr2O3–SiO2, and applications. Contrib Mineral Petrol 145(4):491–491CrossRefGoogle Scholar
  46. Liu XI, O’Neill HStC (2004) The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2–Cr2O3 at 1.1 GPa. J Petrol 45(7):1339–1368CrossRefGoogle Scholar
  47. Liu CZ, Snow JE, Hellebrand E, Brügmann G, von der Handt A, Büchl A, Hofmann AW (2008) Ancient, highly heterogeneous mantle beneath Gakkel ridge, Arctic Ocean. Nature 452(7185):311–316CrossRefGoogle Scholar
  48. Michael PJ, Bonatti E (1985) Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth Planet Sci Lett 73:91–104CrossRefGoogle Scholar
  49. Nagata J, Goto A, Obata M (1983) The parabolic pattern of chromium partitioning observed between pyroxenes and spinel from ultramafic rocks and its petrologic significance. Contrib Mineral Petrol 82(1):42–51CrossRefGoogle Scholar
  50. O’Neill HStC, Navrotsky A (1984) Cation distributions and thermodynamic properties of binary spinel solid solutions. Am Mineral 69(7–8):733–753Google Scholar
  51. Ozawa K (1983) Evaluation of olivine-spinel geothermometry as an indicator of thermal history for peridotites. Contrib Mineral Petrol 82(1):52–65CrossRefGoogle Scholar
  52. Petric A, Jacob KT (1982) Inter- and intra-crystalline ion-exchange equilibria in the system Fe–Cr–Al–O. Solid State Ionics 6(1):47–56CrossRefGoogle Scholar
  53. Pickering-Witter J, Johnston AD (2000) The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib Mineral Petrol 140(2):190–211CrossRefGoogle Scholar
  54. Preß S, Witt G, Seck HA, Eonov D, Kovalenko VI (1986) Spinel peridotite xenoliths from the Tariat Depression, Mongolia. I: major element chemistry and mineralogy of a primitive mantle xenolith suite. Geochim Cosmochim Acta 50:2587–2599CrossRefGoogle Scholar
  55. Robinson JAC, Wood BJ, Blundy JD (1998) The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth Planet Sci Lett 155(1–2):97–111CrossRefGoogle Scholar
  56. Sack RO (1982) Spinels as petrogenetic indicators: activity-composition relations at low pressures. Contrib Mineral Petrol 79:169–186CrossRefGoogle Scholar
  57. Saxena SK (1973) Thermodynamics of rock-forming crystalline solutions. Springer, BerlinGoogle Scholar
  58. Schwab BE, Johnston A (2001) Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol 42(10):1789–1811CrossRefGoogle Scholar
  59. Seitz H, Altherr R, Ludwig T (1999) Partitioning of transition elements between orthopyroxene and clinopyroxene in peridotitic and websteritic xenoliths: new empirical geothermometers. Geochim Cosmochim Acta 63(23-24):3967–3982CrossRefGoogle Scholar
  60. Seyler M, Lorand JP, Dick HJB, Drouin M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°20′N: ODP Hole 1274A. Contrib Mineral Petrol 153(3):303–319CrossRefGoogle Scholar
  61. Stroh JM (1976) Solubility of alumina in orthopyroxene plus spinel as a geobarometer in complex systems. Applications to spinel-bearing alpine-type peridotites. Contrib Mineral Petrol 54(3):173–188CrossRefGoogle Scholar
  62. Suzuki AM, Yasuda A, Ozawa K (2008) Cr and Al diffusion in chromite spinel: experimental determination and its implication for diffusion creep. Phys Chem Miner 35(8):433–445CrossRefGoogle Scholar
  63. Wan Z, Coogan LA, Canil D (2008) Experimental calibration of aluminum partitioning between olivine and spinel as a geothermometer. Am Mineral 93(7):1142–1147CrossRefGoogle Scholar
  64. Wasylenki LE, Baker MB, Kent A Jr, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44(7):1163–1191CrossRefGoogle Scholar
  65. Witt-Eickschen G, O’Neill HStC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221(1–2):65–101CrossRefGoogle Scholar
  66. Witt-Eickschen G, Seck H (1991) Solubility of Ca and Al in orthopyroxene from spinel peridotite: an improved version of an empirical geothermometer. Contrib Mineral Petrol 106(4):431–439CrossRefGoogle Scholar
  67. Wolfram Research, Inc (2008) Mathematica. Version 7.0. Wolfram Research, Inc., ChampaignGoogle Scholar
  68. Workman R, Hart S (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231(1–2):53–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institut für GeowissenschaftenMineralogie - Geochemie Albert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations