Contributions to Mineralogy and Petrology

, Volume 162, Issue 3, pp 651–669 | Cite as

Magma mixing in the 1100 AD Montaña Reventada composite lava flow, Tenerife, Canary Islands: interaction between rift zone and central volcano plumbing systems

  • S. WiesmaierEmail author
  • F. M. Deegan
  • V. R. Troll
  • J. C. Carracedo
  • J. P. Chadwick
  • D. M. Chew
Original Paper


Zoned eruption deposits commonly show a lower felsic and an upper mafic member, thought to reflect eruption from large, stratified magma chambers. In contrast, the Montaña Reventada composite flow (Tenerife) consists of a lower basanite and a much thicker upper phonolite. A sharp interface separates basanite and phonolite, and chilled margins at this contact indicate the basanite was still hot upon emplacement of the phonolite, i.e. the two magmas erupted in quick succession. Four types of mafic to intermediate inclusions are found in the phonolite. Inclusion textures comprise foamy quenched ones, others with chilled margins and yet others that are physically mingled, reflecting progressive mixing with a decreasing temperature contrast between the end-members. Analysis of basanite, phonolite and inclusions for majors, traces and Sr, Nd and Pb isotopes show the inclusions to be derived from binary mixing of basanite and phonolite end-members in ratios of 2:1 to 4:1. Although, basanite and phonolite magmas were in direct contact, contrasting 206Pb/204Pb ratios show that they are genetically distinct (19.7193(21)–19.7418(31) vs. 19.7671(18)–19.7807(23), respectively). We argue that the Montaña Reventada basanite and phonolite first met just prior to eruption and had limited interaction time only. Montaña Reventada erupted from the transition zone between two plumbing systems, the phonolitic Teide-Pico Viejo complex and the basanitic Northwest rift zone. A rift zone basanite dyke most likely intersected the previously emplaced phonolite magma chamber. This led to eruption of geochemically and texturally unaffected basanite, with the inclusion-rich phonolite subsequently following into the established conduit.


Magma mixing Basanite Phonolite Tenerife Canary Islands Reventada 



Carmela Freda and Alejandro Rodríguez-González helped with the interpretation of field evidence. Audray Delcamp is thanked for help in sample preparation. We are grateful to G. Davies, L. Font and R. Smeets for technical support in Amsterdam and B. van der Wagt for ICP-MS and MC-ICP-MS analyses, also in Amsterdam. Chris Harris revised an early version of this manuscript. We thank Cristina De Campos and two anonymous reviewers for their thoughtful comments. This project forms part of the PhD theses of SW and FMD and was supported by a scholarship from the School of Natural Sciences at Trinity College Dublin to SW and a Science Foundation Ireland grant to VRT. We also acknowledge further support from the Boldy/Johnston award from the Department of Geology, Trinity College Dublin to SW and the Plan Nacional I + D+I, project CGL 2008-02842/BTE, and Caja Canarias, Tenerife, Spain to JCC.

Supplementary material

410_2010_596_MOESM1_ESM.doc (3.3 mb)
Supplementary material 1 (DOC 3339 kb)


  1. Ablay GJ, Carroll MR, Palmer MR, Martí J, Sparks RSJ (1998) Basanite-Phonolite Lineages of the Teide-Pico Viejo Volcanic Complex, Tenerife, Canary Islands. J Petrol 39(5):905–936CrossRefGoogle Scholar
  2. Abratis M, Schmincke HU, Hansteen T (2002) Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. Int J Earth Sci 91(4):562–582CrossRefGoogle Scholar
  3. Araña V, Aparicio A, Garcia Cacho L, Garcia Garcia R (1989) Mezcla de magmas en la región central de Tenerife. In: Araña V, Coello J (eds) Los volcanes y la caldera del Parque Nacional del Teide (Tenerife, Islas Canarias), Vol. Ministerio de Agricultura Pesca y Alimentación, pp 269–298Google Scholar
  4. Araña V, Martí J, Aparicio A, García-Cacho L, García-García R (1994) Magma mixing in alkaline magmas: an example from Tenerife, Canary Islands. Lithos 32(1–2):1–19CrossRefGoogle Scholar
  5. Bacon CR (1986) Magmatic inclusions in silicic and intermediate volcanic rocks. J Geophys Res 91(B6):6091–6112Google Scholar
  6. Bacon CR, Metz JM (1984) Magmatic inclusions in rhyolites, contaminated basalts, and compositional zonation beneath the Coso volcanic field, California. Contrib Miner Petrol 85:346–365CrossRefGoogle Scholar
  7. Baker DR (1990) Chemical interdiffusion of dacite and rhyolite: anhydrous measurements at 1 atm and 10 kbar, application of transition state theory, and diffusion in zoned magma chambers. Contrib Miner Petrol 104(4):407–423CrossRefGoogle Scholar
  8. Bas MJL, Maitre RWL, Streckeisen A, Zanettin B, ISotSoI Rocks (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750Google Scholar
  9. Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76(4):382–403CrossRefGoogle Scholar
  10. Bindeman IN, Davis AM (1999) Convection and redistribution of alkalis and trace elements during the mingling of basaltic and rhyolitic melts. Petrol 7(1):91–101Google Scholar
  11. Bindeman IN, Perchuk LL (1993) Experimental studies of magma mixing at high pressures. Int Geol Rev 35:721–733CrossRefGoogle Scholar
  12. Blake S (1981a) Eruptions from zoned magma chambers. J Geol Soc (London, UK) 138(3):281–287Google Scholar
  13. Blake S, Ivey GN (1986) Magma-mixing and the dynamics of withdrawal from stratified reservoirs. J Volcanol Geotherm Res 27(1–2):153–178CrossRefGoogle Scholar
  14. Brian S, Geoffrey T, Margaret S, John NL (1980) Analysis of geologic materials using an automated x-ray fluorescence system. X-Ray Spectr 9(4):198–205CrossRefGoogle Scholar
  15. Browne BL, Eichelberger JC, Patino LC, Vogel TA, Uto K, Hoshizumi H (2006) Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan. J Volcanol Geotherm Res 154(1–2):103–116CrossRefGoogle Scholar
  16. Calanchi N, Rosa R, Mazzuoli R, Rossi P, Santacroce R, Ventura G (1993) Silicic magma entering a basaltic magma chamber: eruptive dynamics and magma mixing—an example from Salina (Aeolian islands, Southern Tyrrhenian Sea). Bull Volcanol 55(7):504–522CrossRefGoogle Scholar
  17. Campbell IH, Turner JS (1986) The Influence of viscosity on fountains in Magma chambers. J Petrol 27(1):1–30Google Scholar
  18. Carracedo JC (1994) The Canary Islands: an example of structural control on the growth of large oceanic-island volcanoes. J Volcanol Geotherm Res 60(3–4):225CrossRefGoogle Scholar
  19. Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide Volcano and Rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 119(9):1027–1051CrossRefGoogle Scholar
  20. Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Rodríguez González A, Socorro S (2008) El Volcán Teide—Volcanología, Interpretación de Pasajes y Iterinarios Comentados, vol. Caja Generál de Ahorros de CanariasGoogle Scholar
  21. Coombs ML, Eichelberger JC, Rutherford MJ (2000) Magma storage and mixing conditions for the 1953–1974 eruptions of Southwest Trident volcano, Katmai National Park, Alaska. Contrib Miner Petrol 140(1):99–118CrossRefGoogle Scholar
  22. Coombs ML, Eichelberger JC, Rutherford MJ (2003) Experimental and textural constraints on mafic enclave formation in volcanic rocks. J Volcanol Geotherm Res 119(1–4):125–144CrossRefGoogle Scholar
  23. Crank J (1975) The mathematics of diffusion, vol. Clarendon, OxfordGoogle Scholar
  24. De Campos CP, Dingwell DB, Perugini D, Civetta L, Fehr TK (2008) Heterogeneities in magma chambers: Insights from the behaviour of major and minor elements during mixing experiments with natural alkaline melts. Chem Geol 256(3–4):131–145CrossRefGoogle Scholar
  25. Eggins SM, Woodhead JD, Kinsley LPJ, Mortimer GE, Sylvester P, McCulloch MT, Hergt JM, Handler MR (1997) A simple method for the precise determination of > = 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chem Geol 134(4):311–326CrossRefGoogle Scholar
  26. Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288(5790):446–450CrossRefGoogle Scholar
  27. Eichelberger JC, Izbekov PE (2000) Eruption of Andesite triggered by Dyke injection: contrasting cases at Karymsky Volcano, Kamchatka and Mt Katmai, Alaska. Philos Trans R Soc London, Ser A 358(1770):1465–1485Google Scholar
  28. Eichelberger JC, Chertkoff DG, Dreher ST, Nye CJ (2000) Magmas in collision: rethinking chemical zonation in silicic magmas. Geology 28(7):603–606CrossRefGoogle Scholar
  29. Elburg M, Vroon P, van der Wagt B, Tchalikian A (2005) Sr and Pb isotopic composition of five USGS glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G). Chem Geol 223(4):196–207CrossRefGoogle Scholar
  30. Freundt A, Schmincke H-U (1992) Mixing of rhyolite, trachyte and basalt magma erupted from a vertically and laterally zoned reservoir, composite flow P1, Gran Canaria. Contrib Miner Petrol 112(1):1–19CrossRefGoogle Scholar
  31. Gamble JA (1979) Some relationships between coexisting granitic and basaltic magmas and the genesis of hybrid rocks in the Tertiary central complex of Slieve Gullion, Northeast Ireland. J Volcanol Geotherm Res 5(3–4):297–316CrossRefGoogle Scholar
  32. Geldmacher J, Haase KM, Devey CW, Garbe-Schönberg CD (1998) The petrogenesis of Tertiary cone-sheets in Ardnamurchan, NW Scotland: petrological and geochemical constraints on crustal contamination and partial melting. Contrib Miner Petrol 131(2):196–209CrossRefGoogle Scholar
  33. Gertisser R (2010) Eyjafjallajökull volcano causes widespread disruption to European air traffic. Geol Today 26(3):94–95CrossRefGoogle Scholar
  34. Gurenko AA, Hoernle KA, Hauff F, Schmincke HU, Han D, Miura YN, Kaneoka I (2006) Major, trace element and Nd-Sr-Pb-O-He-Ar isotope signatures of shield stage lavas from the central and western Canary Islands: Insights into mantle and crustal processes. Chem Geol 233(1–2):75–112CrossRefGoogle Scholar
  35. Hammer JE, Cashman KV, Voight B (2000) Magmatic processes revealed by textural and compositional trends in Merapi dome lavas. J Volcanol Geotherm Res 100(1–4):165–192CrossRefGoogle Scholar
  36. Harvey PK, Taylor DM, Hendry RD, Bancroft F (1973) An accurate fusion method for the analysis of rocks and chemically related materials by X-ray fluorescence spectrometry. X-Ray Spectrom 2(1):33–44CrossRefGoogle Scholar
  37. Hibbard MJ (1995) Petrography to Petrogenesis, vol. Prentice Hall, Englewood Cliffs, p 587Google Scholar
  38. Hildreth EW (1979) The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Spec Publ 180:43–75Google Scholar
  39. Hildreth W (1981) Gradients in Silicic Magma chambers: implications for Lithospheric magmatism. J Geophys Res 86(B11):10153–10192Google Scholar
  40. Huppert HE, Turner JS, Stephen R, Sparks J (1982) Replenished magma chambers: effects of compositional zonation and input rates. Earth Planet Sci Lett 57(2):345–357CrossRefGoogle Scholar
  41. Huppert HE, Sparks RSJ, Turner JS (1983) Laboratory investigations of viscous effects in replenished magma chambers. Earth Planet Sci Lett 65(2):377–381CrossRefGoogle Scholar
  42. Huppert HE, Stephen R, Sparks J, Turner JS (1984) Some effects of viscosity on the dynamics of replenished magma chambers. J Geophys Res 89(B8):6857–6877Google Scholar
  43. Izbekov PE, Eichelberger JC, Ivanov BV (2004) The 1996 Eruption of Karymsky Volcano, Kamchatka: historical record of Basaltic replenishment of an Andesite Reservoir. J Petrol 45(11):2325–2345CrossRefGoogle Scholar
  44. Kouchi A, Sunagawa I (1985) A model for mixing basaltic and dacitic magmas as deduced from experimental data. Contrib Miner Petrol 89(1):17–23CrossRefGoogle Scholar
  45. Koyaguchi T (1989) Chemical gradient at diffusive interfaces in magma chambers. Contrib Miner Petrol 103(2):143–152CrossRefGoogle Scholar
  46. Kuritani T (2001) Replenishment of a mafic magma in a zoned felsic magma chamber beneath Rishiri Volcano, Japan. Bull Volcanol 62(8):533–548CrossRefGoogle Scholar
  47. Lesher CE (1986) Effects of silicate liquid composition in mineral-liquid element partitioning from Soret diffusion studies. J Geophys Res 91:6123–6141CrossRefGoogle Scholar
  48. Lesher CE, Walker D (1986) Solution properties of silicate liquids from thermal diffusion experiments. Geochim Cosmochim Acta 50:1397–1411CrossRefGoogle Scholar
  49. Luais B, Telouk P, Albaréde F (1997) Precise and accurate neodymium isotopic measurements by plasma-source mass spectrometry. Geochim Cosmochim Acta 61(22):4847–4854CrossRefGoogle Scholar
  50. Marshall LA, Sparks RSJ (1984) Origin of some mixed-magma and net-veined ring intrusions. J Geol Soc (London, UK) 141(1):171–182Google Scholar
  51. McDonough WF, Ss Sun (1995) The composition of the earth. Chem Geol 120(3–4):223–253CrossRefGoogle Scholar
  52. Meade FC, Chew DM, Troll VR, Ellam RM, Page LM (2009) Magma Ascent along a major terrane boundary: crustal contamination and Magma mixing at the Drumadoon Intrusive complex, Isle of Arran, Scotland. J Petrol 50(12):2345–2374CrossRefGoogle Scholar
  53. Norrish K, Hutton JT (1969) An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochim Cosmochim Acta 33(4):431–453CrossRefGoogle Scholar
  54. Palacz ZA, Wolff JA (1989) Strontium, neodymium and lead isotope characteristics of the Granadilla Pumice, Tenerife: a study of the causes of strontium isotope disequilibrium in felsic pyroclastic deposits. Geol Soc Spec Publ 42(1):147–159CrossRefGoogle Scholar
  55. Pallister JS, Hoblitt RP, Reyes AG (1992) A basalt trigger for the 1991 eruptions of Pinatubo volcano? Nature 356(6368):426–428CrossRefGoogle Scholar
  56. Perugini D, Poli G, Mazzuoli R (2003) Chaotic advection, fractals and diffusion during mixing of magmas: evidence from lava flows. J Volcanol Geotherm Res 124(3–4):255–279CrossRefGoogle Scholar
  57. Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298(2):209–217CrossRefGoogle Scholar
  58. Raczek I, Jochum KP, Hofmann AW (2003) Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, GSP-1, GSP-2 and eight MPI-DING reference glasses. Geostandards Newslett 27:173–179CrossRefGoogle Scholar
  59. Sigmundsson F, Hreinsdottir S, Hooper A, Arnadottir T, Pedersen R, Roberts MJ, Oskarsson N, Auriac A, Decriem J, Einarsson P, Geirsson H, Hensch M, Ofeigsson BG, Sturkell E, Sveinbjornsson H, Feigl KL (2010) Intrusion triggering of the 2010 Eyjafjallajökull explosive eruption. Nature 468:426–430Google Scholar
  60. Simonsen SL, Neumann ER, Seim K (2000) Sr-Nd-Pb isotope and trace-element geochemistry evidence for a young HIMU source and assimilation at Tenerife (Canary Island). J Volcanol Geotherm Res 103(1–4):299–312CrossRefGoogle Scholar
  61. Smith RL (1979) Ash-flow magmatism. Geol Soc Spec Publ 180:5–27Google Scholar
  62. Smith R, Bailey R (1966) The Bandelier Tuff: a study of ash-flow eruption cycles from zoned Magma chambers. Bull Volcanol 29(1):83–103CrossRefGoogle Scholar
  63. Snyder D, Tait S (1996) Magma mixing by convective entrainment. Nature 379(6565):529–531CrossRefGoogle Scholar
  64. Sparks RSJ (1997) Causes and consequences of pressurisation in lava dome eruptions. Earth Planet Sci Lett 150:177–189Google Scholar
  65. Sparks SRJ, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267(5609):315–318CrossRefGoogle Scholar
  66. Stewart ML, Pearce TH (2004) Sieve-textured plagioclase in dacitic magma: Interference imaging results. Am Miner 89:348–351Google Scholar
  67. Tepley FJ III, Davidson JP, Clynne MA (1999) Magmatic interactions as recorded in Plagioclase Phenocrysts of Chaos Crags, Lassen Volcanic Center, California. J Petrol 40(5):787–806CrossRefGoogle Scholar
  68. Troll VR, Schmincke HU (2002) Magma mixing and crustal recycling recorded in Ternary Feldspar from compositionally Zoned Peralkaline Ignimbrite ‘A’, Gran Canaria, Canary Islands. J Petrol 43(2):243–270CrossRefGoogle Scholar
  69. Troll VR, Donaldson CH, Emeleus CH (2004) Pre-eruptive magma mixing in ash-flow deposits of the Tertiary Rum Igneous Centre, Scotland. Contrib Miner Petrol 147(6):722–739CrossRefGoogle Scholar
  70. Turner JS (1980) A fluid-dynamical model of differentiation and layering in magma chambers. Nature 285(5762):213–215CrossRefGoogle Scholar
  71. Turner JS, Campbell IH (1986) Convection and mixing in magma chambers. Earth Sci Rev 23(4):255–352CrossRefGoogle Scholar
  72. Turner SP, Platt JP, George RMM, Kelley SP, Pearson DG, Nowell GM (1999) Magmatism associated with Orogenic Collapse of the Betic-Alboran Domain, SE Spain. J Petrol 40(6):1011–1036CrossRefGoogle Scholar
  73. Walker D, DeLong SE (1982) Soret separation of mid-ocean ridge basalt magma. Contrib Miner Petrol 79:231–240CrossRefGoogle Scholar
  74. Walker D, Lesher CE, Hays JF (1981) Soret separation of lunar liquids. In: Lunar and planetary science XII, vol, pp 991–999Google Scholar
  75. Watson EB (1982) Basalt contamination by continental crust: some experiments and models. Contrib Miner Petrol 80:73–87CrossRefGoogle Scholar
  76. Watson EB, Baker DR (1991) Chemical diffusion in Magmas: an overview of experimental results and geochemical applications. In: Perchuk LL, Kushiro I (eds) Advances in physical geochemistry, vol 6. Springer, New York, pp 120–151Google Scholar
  77. Watson EB, Baxter EF (2007) Diffusion in solid-earth systems. Earth Planet Sci Lett 253(3–4):307–327CrossRefGoogle Scholar
  78. Weis D, Kieffer B, Maerschalk C, Barling J, de Jong J, Williams GA, Hanano D, Pretorius W, Mattielli N, Scoates JS, Goolaerts A, Friedman RM, Mahoney JB (2006) High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem Geophys Geosyst 7(8):Q08006Google Scholar
  79. Wiesmaier S (2010) Magmatic differentiation and bimodality in oceanic island settings—implications for the petrogenesis of magma in Tenerife, Spain. PhD Thesis, Dept. Of Geology, Trinity College Dublin, p 191Google Scholar
  80. Wolff JA, Storey M (1984) Zoning in highly alkaline magma bodies. Geol Mag 121(6):563–575CrossRefGoogle Scholar
  81. Wolff JA, Grandy JS, Larson PB (2000) Interaction of mantle-derived magma with island crust? Trace element and oxygen isotope data from the Diego Hernandez Formation, Las Canadas, Tenerife. J Volcanol Geotherm Res 103(1–4):343–366CrossRefGoogle Scholar
  82. Zimanowski B, Büttner R, Koopmann A (2004) Experiments on magma mixing. Geophys Res Lett 31(9):L09612CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • S. Wiesmaier
    • 1
    Email author
  • F. M. Deegan
    • 2
  • V. R. Troll
    • 2
  • J. C. Carracedo
    • 3
  • J. P. Chadwick
    • 4
  • D. M. Chew
    • 1
  1. 1.Department of GeologyTrinity College DublinDublin 2Ireland
  2. 2.Department of Earth SciencesUppsala UniversityUppsalaSweden
  3. 3.Estación Volcanológica de Canarias, IPNA-CSICLa Laguna, TenerifeSpain
  4. 4.Department of Petrology (FALW)Vrjie UniversiteitAmsterdamThe Netherlands

Personalised recommendations