Contributions to Mineralogy and Petrology

, Volume 162, Issue 1, pp 61–81 | Cite as

Mass transfer and porosity evolution during low temperature water–rock interaction in gneisses of the simano nappe: Arvigo, Val Calanca, Swiss Alps

  • Tobias WeisenbergerEmail author
  • Kurt Bucher
Original Paper


Late Alpine fissures and fractures in amphibolite-facies basement gneisses at Arvigo (Val Calanca, Swiss Alps) show distinct cm-sized reaction selvages parallel to the fracture walls that composed of subgreenschist facies assemblages produced by the interaction of water present in the fracture porosity with the old high-grade gneiss assemblages. The process of selvage or reaction-vein formation occurred in the brittle deformation regime and at temperatures characteristic of, first the prehnite-pumpellyite facies and then later of the zeolite facies. The vein formation occurred during uplift and cooling at very late stages of the Alpine orogeny. The reaction veins are composed of a selvage of altered gneiss on both sides of the central fracture and a central zone with fissure minerals that have been growing in the open fracture pore space. The central zone of the Arvigo veins contains an early assemblage with epidote, prehnite and chlorite and a late succession sequence of various species of zeolite. The veins of the Arvigo quarry are convincing evidence that fracture fluids in gneiss and granite have the potential to precipitate Ca–zeolite. This is an important find because many fluids recovered from deep continental drill holes and from geothermal energy exploration are found to be oversaturated in respect to a number of Ca–zeolite species. Vein formation during late uplift and cooling of the Alps occurred at continuously decreasing T and at hydrostatic pressure: (1) coexisting prehnite/epidote records temperatures of 330–380°C, (2) chlorite formation at temperature of 333 ± 32°C and (3) formation of zeolites <250°C. In the selvages the prime reaction is the replacement of plagioclase by albite along a sharp reaction front that separates the selvage from unaltered gneiss. In addition to albitisation, chloritisation of biotite is the second important reaction in the alteration process. The reactions release components for the formation of Ca–Al silicates. The water–rock interaction is associated with a depletion of Al, Si, Ca, Fe and K in the altered wall rock. The overall reaction is associated with an increase in porosity of up to 14.2 ± 2.2% in the selvage zone (altered wall rock), caused by the volume decrease during albitisation and the removal of biotite. The propagation of the sharp reaction front through the gneiss matrix occurred via a dissolution-reprecipitation mechanism. Zeolite formation is tied to the plagioclase alteration reaction in the rock matrix, which releases components for zeolite formation to a CO2-poor aqueous liquid.


Water–Rock Interaction Laumontite Prehnite Reaction Vein Albitisation Arvigo Swiss Alps 



We are grateful to Giovanni and Alfredo Polti for permission to do field work in the active quarry. Special thanks go to the technicians and staff of the Institute of Geosciences, Mineralogy—Geochemistry, University of Freiburg and particularly H. Müller-Sigmund for her useful advise during EMP analyses and her patience with us at the electron microprobe. A. Leemann from the Swiss Federal Laboratories for Materials Testing and Research for impregnation of rock samples. We thank J. Ferry, L. Machiels and an anonymous reviewer for their very detailed and constructive comments that have greatly improved our paper and J. Hoefs for his editorial efforts and the editorial handling of the paper. A special thanks deserved to the Friedrich Rinne foundation for the financial support.

Supplementary material

410_2010_583_MOESM1_ESM.doc (203 kb)
Electronic supplementary material 1: (DOC 203 kb)
410_2010_583_MOESM2_ESM.eps (7.8 mb)
Electronic supplementary material 2: X-ray images (TS 12.1) showing a relict plagioclase grain surrounded by albite, showing increased porosity around plagioclase. (a) Ca element map. Plagioclase shows Ca enrichment relative to the core. (b) K element map. (c) Na element map. Same colour codes are used as in figure 6 (EPS 7989 kb)
410_2010_583_MOESM3_ESM.doc (124 kb)
Electronic supplementary material 3: (DOC 124 kb)
410_2010_583_MOESM4_ESM.doc (93 kb)
Electronic supplementary material 4: (DOC 93 kb)
410_2010_583_MOESM5_ESM.doc (68 kb)
Electronic supplementary material 5: (DOC 67 kb)
410_2010_583_MOESM6_ESM.eps (4.6 mb)
Electronic supplementary material 6: X-ray images showing element distribution in a prehnite aggregate indicating a Fe ⇔ Al substitution during growth. (a) Fe element map showing an iron-enrichment in the core. (b) Al element map showing an Al-depletion in the core. The same colour code are used as in figure 6 (EPS 4755 kb)
410_2010_583_MOESM7_ESM.doc (59 kb)
Electronic supplementary material 7: (DOC 59 kb)
410_2010_583_MOESM8_ESM.doc (90 kb)
Electronic supplementary material 8: (DOC 89 kb)
410_2010_583_MOESM9_ESM.eps (428 kb)
Electronic supplementary material 9: (a) Extra-framework cation (Ca+Sr+Mg-Na-K) distribution of zeolites. (b) R2+ - R+ - Si compositional diagram of zeolites. Si/Al ratio increases in chronologic order. Dashed area marks the chemical composition of zeolites found in granites and gneisses in the Swiss Alps (Weisenberger and Bucher 2010) (EPS 428 kb)


  1. Armbruster T (2000) Cation distribution in Mg, Mn-bearing babingtonite from Arvigo, Val Calanca, Grisons, Switzerland. Schweiz Mineral Petrogr Mitt 80:279–284Google Scholar
  2. Armbruster T, Kohler T, Meisel T, Nägler TF, Götzinger MA, Stalder HA (1996) The zeolite, fluorite, quartz assemblage of the fissure at Gibelsbach, Fiesch (Valais, Switzerland): crystal chemistry, REE patterns, and genetic speculations. Schweiz Mineral Petrogr Mitt 76:131–146Google Scholar
  3. Armbruster T, Stalder HA, Gnos E, Hofmann BA, Herwegh M (2000) Epitaxy of hedenbergite whiskers on babingtonite in Alpine fissures at Arvigo, Val Calanca, Grisons, Switzerland. Schweiz Mineral Petrogr Mitt 80:285–290Google Scholar
  4. Austrheim H (1987) Eclogitization of the lower crustal granulites by fluid migration through shear zones. Earth Planet Sci Lett 81:221–232CrossRefGoogle Scholar
  5. Berger A, Mercolli I, Engi M (2005) Tectonic and petrographic map of the Central Lepontine Alps, 1:100’000. Schweiz Mineral Petrogr Mitt 85:109–146Google Scholar
  6. Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2–H2O-CO2. J Petrol 29:445–522Google Scholar
  7. Bevins RE, Rowbotham G, Robinson D (1991) Zeolite to prehnite-pumpellyite facies metamorphism of the late Proterozoic Zig-Zag Dal Basalt Formation, eastern North Greenland. Lithos 27:155–165CrossRefGoogle Scholar
  8. Bird DK, Schiffman P, Elders WA, Williams AE, McDowell SD (1984) Calcsilicate mineralization in active geothermal systems. Econ Geol 79:671–695CrossRefGoogle Scholar
  9. Bons PD (2001) The formation of large quartz veins by rapid ascent of fluid in mobile hydrofractures. Tectonophysics 336:1–17CrossRefGoogle Scholar
  10. Brughera F (1984) Aquamarin aus dem Steinbruch von Arvigo (Calancatal). Schweizer Strahler 6:498–501Google Scholar
  11. Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks. Springer, BerlinGoogle Scholar
  12. Bucher K, Stober I (2010) Fluids in the upper continental crust. Geofluids 10:241–253Google Scholar
  13. Bucher K, Zhu Y, Stober I (2009) Groundwater in fractured crystalline rock, the Clara mine, Black Forest, Germany. Int J Earth Sci 98:1727–1739CrossRefGoogle Scholar
  14. Bucher-Nurminen K (1982) Mechanism of mineral reactions inferred from textures of impure dolomitic marbles from East Greenland. J Petrol 23:325–343Google Scholar
  15. Carmichael DM (1969) On the mechanism of prograde metamorphic reactions in quartz bearing pelitic rocks. Contrib Mineral Petrol 20:244–267CrossRefGoogle Scholar
  16. Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals 23:471–485CrossRefGoogle Scholar
  17. Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244CrossRefGoogle Scholar
  18. Cho M, Liou JG, Maruyama S (1986) Transition from the zeolite to prehnite-pumpellyite facies in the Karmutsen Metabasites, Vancouver Island, British Columbia. J Petrol 27:467–494Google Scholar
  19. Cho M, Maruyama S, Liou JG (1987) An experimental investigation of heulandite-laumontite equilibrium at 1000 to 2000 bar Pfluid. Contrib Mineral Petrol 97:43–50CrossRefGoogle Scholar
  20. Clark C, Schmist Mumm A, Faure K (2005) Timing and nature of fluid flow and alteration during Mesoproterozoic shear zone formation, Olary Domain, South Australia. J Metamorph Geol 23:147–164CrossRefGoogle Scholar
  21. Coelho J (2006) GEOISO—a WindowsTM program to calculate and plot mass balances and volume changes occurring in a wide variety of geologic processes. Comput Geosci 32:1523–1528CrossRefGoogle Scholar
  22. Cole DR, Larson PB, Riciputi LR, Mora CI (2004) Oxygen isotope zoning profiles in hydrothermally altered feldspars; estimating the duration of water-rock interaction. Geology 32:29–32CrossRefGoogle Scholar
  23. Coombs DS, Alberti A, Artioli A, Armbruster T, Colella C, Galli E, Grice JD, Liebau F, Mandarino JA, Minato H, Nickel EH, Passaglia E, Peacor DR, Quartieri S, Rinaldi R, Ross M, Sheppard RA, Tillmanns E, Vezzalini G (1998) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names. Mineral Mag 62:533–571CrossRefGoogle Scholar
  24. de Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Acta 51:2639–2652CrossRefGoogle Scholar
  25. De Caritat P, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clays and Clay Miner 41:219–239CrossRefGoogle Scholar
  26. Diegel S, Ghent ED (1994) Fluid-mineral equilibria in prehnite-pumpellyite to greenschist facies metabasites near Flin Flon, Manitoba, Canada: implications for petrogenetic grids. J Metamorph Geol 12:467–477CrossRefGoogle Scholar
  27. Engi M, Todd CS, Schmatz D (1995) Tertiary metamorphic conditions in the eastern Lepontine Alps. Schweiz Mineral Petrogr Mitt 75:347–369Google Scholar
  28. Engvik A, Putnis A, Fitz Gerald JD, Austrheim H (2008) Albitisation of granitoid: the mechanism of plagioclase replacement by albite. Can Mineral 46:1401–1415CrossRefGoogle Scholar
  29. Faryad SW, Dianiska I (2003) Ti-bearing andradite-prehnite-epidote assemblage from the Malá Fatra granodiorite and tonalite (Western Carpathians). Schweiz Mineral Petrogr Mitt 82:47–56Google Scholar
  30. Ferry JM (1979) Reactions mechanism, physical conditions, and mass transfer during hydrothermal alteration of mica and feldspar in granitic rocks from South-central Maine, USA. Contrib Mineral Petrol 68:125–139CrossRefGoogle Scholar
  31. Freiberger R, Hecht L, Cuney M, Morteani G (2001) Secondary Ca-Al silicates in plutonic rocks: implications for their cooling history. Contrib Mineral Petrol 141:415–429CrossRefGoogle Scholar
  32. Frey M, de Capitani C, Liou JG (1991) A new petrogenetic grid for low-grade metabasites. J Metamorph Geol 9:497–509CrossRefGoogle Scholar
  33. Gianelli G, Mekuria N, Battaglia S, Cheriscla A, Garofalo P, Ruggieri G, Manganelli M, Gebregziabher Z (1998) Water-rock interaction and hydrothermal mineral equilibria in the Tendaho geothermal system. J Volc Geothermal Res 86:253–276CrossRefGoogle Scholar
  34. Gottardi G (1989) The genesis of zeolites. Eur J Mineral 1:479–487Google Scholar
  35. Graeser S, Stalder HA (1976) Mineral-Neufunde aus der Schweiz und angrenzenden Gebieten. Schweizer Strahler 4:158–171Google Scholar
  36. Grant JA (1986) The isocon diagram—a simple solution the Gresens’ equation for metasomatic alteration. Econ Geol 81:1976–1982CrossRefGoogle Scholar
  37. Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2:47–65CrossRefGoogle Scholar
  38. Hay RL (1966) Zeolites and zeolitic reactions in sedimentary rocks. Geol Soc Amer Special, Paper No 85, pp 1–130Google Scholar
  39. Hay RL (1977) Geology of zeolites in sedimentary rocks. In: Mumpton FA (ed) Mineralogy and geology of natural zeolites, Mineralogical Society of America, Short Course Notes, Washington, DC, pp 53–64Google Scholar
  40. Hay RL, Sheppard RA (1977) Zeolites in open hydrologic systems. In: Mumpton FA (ed) Mineralogy and geology of natural zeolites. Mineralogical Society of America, Short Course Notes, Washington, DC, pp 93–102Google Scholar
  41. Hay RL, Sheppard RA (2001) Occurrences of zeolites in sedimentary rocks. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties; applications, Reviews in Mineralogy & Geochemistry, vol 45. Mineralogical Society of America, Washington, DC, pp 217–234Google Scholar
  42. Jenny H, Frischknecht G, Knopp J (1923) Geologie der Adula. Beitr Geol Karte Schweiz. Schweizerische Geologische Kommision, BernGoogle Scholar
  43. Keller F (1968) Mineralparagenesen und Geologie der Campo Tencia-Pizzo Forno-Gebirgsgruppe. Beitr Geol Karte Schweiz. Schweizerische Geologische Kommision, BernGoogle Scholar
  44. Köppel V, Grünenfelder M (1975) Concordant U-Pb ages of monazite and xenotime from the Central Alps and the timing of the high temperature Alpine metamorphism, a preliminary report. Schweiz Mineral Petrogr Mitt 55:129–132Google Scholar
  45. Kristmannsdóttir H, Tómasson J (1978) Zeolites zones in geothermal areas in Iceland. In: Sand LB, Mumpton FA (eds) Natural zeolites: occurrence Properties use. Pergamon Press, New York, pp 277–284Google Scholar
  46. Kuniyoshi S, Liou JG (1976) Contact metamorphism of the Karmutsen Volcanics, Vancouver Islands, British Columbia. J Petrol 17:73–99Google Scholar
  47. Lee MR, Thompson P, Poeml P, Parsons L (2003) Peristeritic plagioclase in North Sea hydrocarbon reservoir rocks: Implications for diagenesis, provenance and stratigraphic correlation. Am Mineral 88:866–875Google Scholar
  48. Leichmann J, Broska I, Zachovalova K (2003) Low-grade metamorphic alteration of feldspar minerals: a CL study. Terra Nova 15:104–108CrossRefGoogle Scholar
  49. Liou JG (1971) P-T stabilities of laumontite, wairakite, lawsonite, and related minerals in the system CaAl2Si2O8-SiO2–H2O. J Petrol 12:379–411Google Scholar
  50. Liou JG (1979) Zeolite facies metamorphism of basaltic rocks from the East Taiwan Ophiolite. Am Mineral 64:1–14Google Scholar
  51. Liou JG (1985) Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism. Mineral Mag 49:321–333CrossRefGoogle Scholar
  52. Liou JG, Kim HS, Maruyama S (1983) Prehnite-epidote equilibria and their petrologic applications. J Petrol 24:321–342Google Scholar
  53. Maeder UK, Berman RG (1991) An equation of state for carbon dioxide to high pressure and temperature. Am Mineral 76:1547–1559Google Scholar
  54. Mercolli I, Schenker F, Stalder HA (1984) Geochemie der Veränderungen von Granit durch hydrothermale Lösungen. Schweiz Mineral Petrogr Mitt 64:67–82Google Scholar
  55. Mullis J, Dubessy J, Poty B, O’Neil J (1994) Fluid regimes during late stages of a continental collision: physical, chemical and stabel isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland. Geochim Cosmochim Acta 58:2239–2267CrossRefGoogle Scholar
  56. Nagel T, de Capitani C, Frey M (2002) Isograds and P-T evolution in the eastern Lepontine Alps. J Metamorph Geol 20:309–324CrossRefGoogle Scholar
  57. Neuhoff PS, Fridriksson T, Arnórsson S (1999) Porosity evolution and mineral paragenesis during low-grade metamorphism of basaltic lavas at Teigarhorn, Eastern Iceland. Am J Sci 299:467–501CrossRefGoogle Scholar
  58. Neuhoff PS, Fridriksson T, Bird DK (2000) Zeolite parageneses in the North Atlantic Igneous Provinces: implications for geotectonics and groundwater quality of basaltic crust. Int Geol Rev 42:15–44CrossRefGoogle Scholar
  59. Nordstrom DK, Ball JW, Donahoe RJ, Whittemore d (1989) Groundwater chemistry and water-rock interactions at Stripa. Geochim Cosmochim Acta 53:1727–1740CrossRefGoogle Scholar
  60. Orvosová M, Majzlan J, Chovan M (1998) Hydrothermal alteration of granitoid rocks and gneisses in the Sb-Au Dúbrava deposit, Western Carpathians. Geol Carp 49:377–387Google Scholar
  61. Parneix JC, Petit JC (1991) Hydrothermal alteration of an old geothermal system in the Auriat Granite (Massif Central, France); petrological study and modelling. Chem Geol 89:329–351CrossRefGoogle Scholar
  62. Parry WT, Downey LM (1982) Geochemistry of hydrothermal chlorite replacing igneous biotite. Clays Clay Miner 30:81–90CrossRefGoogle Scholar
  63. Passaglia E (1970) The crystal chemistry of chabazite. Am Mineral 55:1278–1301Google Scholar
  64. Phillips ER, Rickwood PC (1975) The biotite-prehnite association. Lithos 8:275–281CrossRefGoogle Scholar
  65. Poty BP, Stalder HA, Weisbrod AM (1974) Fluid inclusions studies in quartz from fissures of Western and Central Alps. Schweiz Mineral Petrogr Mitt 54:717–752Google Scholar
  66. Pouchou G, Pichior F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model of “PAP”. In: Heinrich KFJ, Newbiry DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75Google Scholar
  67. Purdy JW, Stalder HA (1973) K-Ar ages of fissure minerals from the Swiss Alps. Schweiz Mineral Petrogr Mitt 53:79–98Google Scholar
  68. Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180:1783–1786CrossRefGoogle Scholar
  69. Ragnarsdottir KV, Walther JV (1985) Experimental determination of corundum solubilities in pure water between 400–700°C and 1–3 kbars. Geochim Cosmochim Acta 49:2109–2115CrossRefGoogle Scholar
  70. Rahn M, Mullis J, Erdelbrock K, Frey M (1994) Very low-grade metamorphism of the Taveyanne greywacke, Glarus Alps Switzerland. J Metamorph Geol 12:625–641CrossRefGoogle Scholar
  71. Rose NM, Bird DK (1987) Prehnite-epidote phase relations in the Nordre Aputiteq and Kruuse Fjord Layered Gabbros, East Greenland. J Petrol 28:1193–1218Google Scholar
  72. Rose NM, Bird DK, Liou JG (1992) Experimental investigation of mass transfer—albite, Ca-Al-silicates, and aqueous solutions. Am J Sci 292:21–57CrossRefGoogle Scholar
  73. Ruppe H (1966) Val Calanca—Graubünden. Aufschluss 17:105–109Google Scholar
  74. Rütti R, Maxelon M, Mancktelow NS (2005) Structure and kinematics of the northern Simano Nappe, Central Alps, Switzerland. Eclogae Geol Helv 98:63–81CrossRefGoogle Scholar
  75. Saigal GC, Morad S, Bjørlykke K, Egeberg PK, Aagaard P (1988) Diagenetic albitization of detrital K-feldspar in Jurassic, Lower, Cretaceous, and tertiary clastic reservoir rocks from offshore Norway; I textures and origin. J Sed Petr 58:1003–1013Google Scholar
  76. Sandström B, Annersten H, Tullborg E-L (2010) Fracture related hydrothermal alteration of metagranitic rock and associated changes in mineralogy, geochemistry and degree of oxidation: a case study at Forsmark, central Sweden. Int J Earth Sci 99:1–25Google Scholar
  77. Schaltegger U, Gebauer D, von Quadt A (2002) The mafic and ultramafic rock association of Loderio-Biasca (lower Pennine nappes, Ticino, Switzerland); Cambrian oceanic magmatism and its bearing on early Paleozoic paleogeography. Chem Geol 186:265–279CrossRefGoogle Scholar
  78. Seelig U, Bucher K (2010) Halogens in water from the crystalline basement of the Gotthard rail base tunnel (central Alps). Geochim Cosmochim Acta 74:2581–2595CrossRefGoogle Scholar
  79. Senderov EE (1973) Effect of CO2 on the stability of laumontite. Geochem Int 10:114–139Google Scholar
  80. Simonetti A (1971) Le zeoliti a le loro paragenesi nelle fessure delle rocce del canton Ticino, della Val Calanca e della Val Mesolcina. Boll Soc Ticinese Sci Nat 62Google Scholar
  81. Spicher A (1980) Tektonische Karte der Schweiz 1:500’000, 2nd edn. Schweizerische Geologische Kommision, BernGoogle Scholar
  82. Stalder HA (2007) Kluft-Mineralien aus dem Steinbruch von Arvigo im Calancatal. Schweizer Strahler 1:5–7Google Scholar
  83. Stalder HA, Wagner A, Graser S, Stuker P (1998) Mineralienlexikon der Schweiz. Wepf Verlag, BaselGoogle Scholar
  84. Steck A (1968) Junge Bruchsysteme in den Zentralalpen. Eclogae Geol Helv 61:387–393Google Scholar
  85. Steefel CI (2008) Geochemical kinetics and transport. In: Brantley SL, Kubicki JD, White AF (eds) Kinetics of water-rock interaction. Springer, New York, pp 545–589CrossRefGoogle Scholar
  86. Stober I, Bucher K (1999) Deep groundwater in the crystalline basement of the Black Forest region. Appl Geochem 14:237–254CrossRefGoogle Scholar
  87. Stober I, Bucher K (2005) The upper continental crust, an aquifer and its fluid: Hydaulic and chemical data from 4 km depth in fractured crystalline basement rocks at the KTB test site. Geofluids 5:8–19CrossRefGoogle Scholar
  88. Sun C-O, Williams RJ, Sun S-S (1974) Distribution coefficients of Eu and Sr for plagioclase-fluid and clinopyroxene-liquid equilibria in oceanic ridge basalt: an experimental study. Geochim Cosmochim Acta 38:1415–1433CrossRefGoogle Scholar
  89. Thompson AB (1970) Laumontite equilibria and the zeolite facies. Am J Sci 269:267–275CrossRefGoogle Scholar
  90. Thompson AB (1971) PCO2 in low-grade metamorphism; zeolite, carbonate, clay mineral, prehnite relations in the system CaO-Al2O3-SiO2-CO2–H2O. Contrib Mineral Petrol 33:145–161CrossRefGoogle Scholar
  91. Thompson AB (1975) Calc-silicate diffussion zones between marble and pelitic schist. J Petrol 16:314–346Google Scholar
  92. Todd CS, Engi M (1997) Metamorphic field gradients in the Central Alps. J Metamorph Geol 15:513–530CrossRefGoogle Scholar
  93. Tulloch AJ (1979) Secondary Ca-Al silicates as low-grade alteration products of granitoid biotite. Contrib Mineral Petrol 69:105–117CrossRefGoogle Scholar
  94. Verdes G, Gout R, Castet S (1992) Thermodynamic properties of the aluminate ion and bayrite, boemite, diaspore and gibbsite. Eur J Mineral 4:767–792Google Scholar
  95. Vidal O, Parra T, Trotet F (2001) A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiment and natural pelitic assemblages in the 100–600°C, 1–5 kbar range. Am J Sci 6:557–592CrossRefGoogle Scholar
  96. Wagner A (1968) Mineralien aus den Stenbrüchen von Arvigo. Schweizer Strahler 1:128–131Google Scholar
  97. Wagner A (1980) Die Mineralien aus den Gesteinsbrüchen von Arvigo im Bild (1 Teil). Mineralienfreund 18:137–141Google Scholar
  98. Wagner A (1981) Die Mineralien aus den Gesteinsbrüchen von Arvigo im Bild (2 Teil). Mineralienfreund 19:56–64Google Scholar
  99. Wagner A (1983) Die Mineralien aus dem Val Calanca und den Steinbrüchen von Arvigo. Schweizer Strahler 6:336–355Google Scholar
  100. Wagner A, Stalder HA, Stuker P, Offermann E (2000a) Arvigo—eine der bekanntesten Mineralfundstellen der Schweiz. Schweizer Strahler 12:41–70Google Scholar
  101. Wagner A, Stalder HA, Stuker P, Offermann E (2000b) Arvigo—eine der bekanntesten Mineralfundstellen der Schweiz. Schweizer Strahler 12:118–154Google Scholar
  102. Walker GPL (1960) Zeolite zones and dike distribution in relation to the structure of the basalts of Eastern Iceland. J Geol 68:515–528CrossRefGoogle Scholar
  103. Walker GPL (1963) The Breiddalur central volcano, Eastern Iceland. Quart J Geol Soc Lond 119:29–63CrossRefGoogle Scholar
  104. Walker FDL, Lee MR, Parsons L (1995) Micropores and micropermeable texture in alkali feldspars; geochemical and geophysical implications. Mineral Mag 59:505–534CrossRefGoogle Scholar
  105. Weisenberger T, Bucher K (2008) Porosity evolution and mass transfer during low-grade metamorphism in crystalline rocks of the upper continental crust. In: 33rd IGC International Geological Congress, Oslo MPN03710LGoogle Scholar
  106. Weisenberger T, Bucher K (2010) Zeolite in fissure of granites and gneisses of the Central Alps. J Metam Geol 28:825–847CrossRefGoogle Scholar
  107. Weiß S, Forster O (1997) Arvigo, Val Calanca: Kluftminerale aus dem Süden Graubündens. Lapis 6:13–42Google Scholar
  108. Wenk E (1955) Eine Strukturkarte der Tessineralpen. Schweiz Mineral Petrogr Mitt 35:311–319Google Scholar
  109. Yardley WD, Lloyd GE (1995) Why metasomatic fronts are really metasomatic sides. Geology 23:53–56CrossRefGoogle Scholar
  110. Zen E (1961) The zeolite facies: an interpretation. Am J Sci 259:401–409CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Institute of GeosciencesAlbert-Ludwigs-Universität FreiburgFreiburgGermany
  2. 2.Bureau of Economic Geology, Jackson School of GeosciencesThe University of Texas at AustinAustinUSA

Personalised recommendations