Contributions to Mineralogy and Petrology

, Volume 161, Issue 6, pp 947–960 | Cite as

Formation of cratonic subcontinental lithospheric mantle and complementary komatiite from hybrid plume sources

  • Sonja Aulbach
  • Thomas Stachel
  • Larry M. Heaman
  • Robert A. Creaser
  • Steven B. Shirey
Original Paper


Peridotitic sulphide inclusions in diamonds from the central Slave craton constrain the age and origin of their subcontinental lithospheric mantle (SCLM) sources. These sulphides align with either a ca. 3.5 Ga (shallow SCLM) or a ca. 3.3 Ga isochron (deep SCLM) on a Re–Os ischron diagram, with variably enriched initial 187Os/188Os. Since some Archaean to recent plume-derived melts carry a subducted crust (eclogite) signature and some cratonic SCLM may have been generated in plumes by extraction of komatiitic liquids, we explain these data by subduction of evolved lithospheric material (shallow SCLM) and melting in a hybrid mantle plume that contains domains of recycled eclogite (deep SCLM), respectively. In upwelling hybrid mantle, eclogite-derived melts react with olivine in surrounding peridotites to form aluminous orthopyroxene, convert peridotite to pyroxenite and confer their crustal isotope signatures. We suggest that it is subsequent to orthopyroxene enrichment of peridotite in an upwelling plume that partial melting of this Al- and Si- enriched source generated komatiites and complementary ultradepleted cratonic mantle residues. Although subduction is needed to explain some cratonic features, melting of a hybrid plume source satisfies several key observations: (1) suprachondritic initial 187Os/188Os in subsets of lithospheric mantle samples and in some coeval Archaean komatiites; (2) variable enrichment of cratonic mantle by high-temperature aluminous orthopyroxene; (3) high Mg# combined with high orthopyroxene content in cratonic mantle due to higher melt productivity of an Al- and Si-richer source; (4) variable orthopyroxene enrichment possibly linked to varying mantle potential temperatures (Tp), plume buoyancy and resultant eclogite load and/or variable availability of subducted material in the source; and (5) absence of younger analogues due to a secular decrease in Tp. Most importantly, this model also alleviates a mass balance problem, because it predicts a hybrid mantle source with variably higher SiO2 and Al2O3 than primitive mantle, and, contrary to a primitive mantle source, is able to reconcile compositions of komatiites and complementary cratonic mantle residues.


Osmium isotopes Opx enrichment Silica enrichment Partial melting Peridotite Pyroxenite Eclogite Diamond Xenolith 



We thank Diavik Diamond Mining Inc for financial support and for the generous provision of the samples studied here. Help at the UofA by George Braybrook (SEM lab) and Gayle Hatchard (TIMS lab) is greatly appreciated. Ambre Luguet, an anonymous reviewer and the editor, Chris Ballhaus, provided valuable comments that are greatly appreciated. This work was funded by an NSERC CRD Grant and NSERC Discovery Grants (RAC, TS and LMH). Partial support of the Radiogenic Isotope Facility at the University of Alberta came from an NSERC Major Facilities Access Grant.


  1. Alard O, Griffin WL, Lorand JP, Jackson SE, O’Reilly SY (2000) Non-chondritic distribution of the highly siderophile elements in mantle sulphides. Nature 407:891–894Google Scholar
  2. Allègre CJ, Turcotte DL (1986) Implications of a two-component marble-cake mantle. Nature 323:123–127Google Scholar
  3. Arndt N (2003) Komatiites, kimberlites, and boninites. J Geophys Res 108(B6), 2293, doi: 10.1029/2002JB002157
  4. Arndt NT, Coltice N, Helmstaedt H, Gregoire M (2009) Origin of Archean subcontinental lithospheric mantle: some petrological constraints. Lithos 109:61–71Google Scholar
  5. Aulbach S, Griffin WL, Pearson NJ, O’Reilly SY, Kivi K, Doyle BJ (2004) Mantle formation and evolution, Slave Craton: constraints from HSE abundances and Re-Os isotope systematics of sulfide inclusions in mantle xenocrysts. Chem Geol 208:61–88Google Scholar
  6. Aulbach S, Griffin WL, Pearson NJ, O’Reilly SY, Kivi K (2005) Os-Hf-Nd isotope constraints on subcontinental lithospheric mantle evolution, Slave Craton (Canada). Geochim Cosmochim Acta 69:A284Google Scholar
  7. Aulbach S, Griffin WL, Pearson NJ, O’Reilly SY, Doyle BJ (2007) Lithosphere formation in the central Slave Craton (Canada): plume subcretion or lithosphere accretion? Contrib Mineral Petrol 154:409–427Google Scholar
  8. Aulbach S, Stachel T, Creaser RA, Heaman LM, Shirey SB, Muehlenbachs K, Eichenberg D, Harris JW (2009) Sulphide survival and diamond genesis during formation and evolution of Archaean subcontinental lithosphere: a comparison between the Slave and Kaapvaal cratons. Lithos 112:747–757Google Scholar
  9. Azmy K, Kendall B, Creaser RA, Heaman L, de Oliveira TF (2008) Global correlation of the Vazante group, Sao Francisco Basin, Brazil: Re-Os and U-Pb radiometric age constraints. Precambr Res 164:160–172Google Scholar
  10. Becker H (2000) Re-Os fractionation in eclogites and blueschists and the implications for recycling of oceanic crust into the mantle. Earth Planet Sci Lett 177:287–300Google Scholar
  11. Bell DR, Gregoire M, Grove TL, Chatterjee N, Carlson RW, Buseck PR (2005) Silica and volatile-element metasomatism of Archean mantle: a xenolith-scale example from the Kaapvaal Craton. Contrib Mineral Petrol 150:251–267Google Scholar
  12. Bernstein S, Kelemen PB, Brooks CK (1998) Depleted spinel harzburgite xenoliths in tertiary dykes from east Greenland: restites from high degree melting. Earth Planet Sci Lett 154:221–235Google Scholar
  13. Berry AJ, Danyushevsky LV, O’Neill HSC, Newville M, Sutton SR (2008) Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455:960–963Google Scholar
  14. Bleeker W (2002) Archaean tectonics: a review, with illustrations from the Slave craton. In: Fowler CMR, Ebinger CJ, Hawkesworth CJ (eds) The early earth: physical, chemical and biological development, vol 199. Geol Soc, London, Spec Pub, London, pp 151–181Google Scholar
  15. Bleeker W (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos 71:99–134Google Scholar
  16. Bleeker W, Ketchum J, Jackson V, Villeneuve M (1999) The central Slave basement complex, part I: its structural topology and autochthonous cover. Can J Earth Sci 36:1083–1109Google Scholar
  17. Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26Google Scholar
  18. Boyd FR, Mertzman SA (1987) Composition and structure of the Kaapvaal lithosphere, southern Africa. In: Mysen BO (ed) Magmatic processes: physicochemical principles, vol 1. Geochem Soc Spec Pub, Houston, pp 13–24Google Scholar
  19. Burov E, Cloetingh S (2010) Plume-like upper mantle instabilities drive subduction initiation. Geophys Res Lett 37:L03309. doi: 10.1029/2009GL041535 Google Scholar
  20. Chavagnac V (2004) A geochemical and Nd isotopic study of barberton komatiites (South Africa): implication for the Archean mantle. Lithos 75:253–281Google Scholar
  21. Condie KC (1998) Episodic continental growth and supercontinents: a mantle avalanche connection? Earth Planet Sci Lett 163:97–108Google Scholar
  22. Condie KC (1999) Mafic crustal xenoliths and the origin of the lower continental crust. Lithos 46:95–101Google Scholar
  23. Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst 4:1005. doi: 10.1029/2002GC000333 Google Scholar
  24. Creaser RA, Papanastassiou DA, Wasserburg GJ (1991) Negative thermal ion mass-spectrometry of osmium, rhenium, and iridium. Geochim Cosmochim Acta 55:397–401Google Scholar
  25. Creaser RA, Grutter H, Carlson J, Crawford B (2004) Macrocrystal phlogopite Rb-Sr dates for the Ekati property kimberlites, Slave province, Canada: evidence for multiple intrusive episodes in the Paleocene and Eocene. Lithos 76:399–414Google Scholar
  26. Dale CW, Gannoun A, Burton KW, Argles TW, Parkinson IJ (2007) Rhenium-osmium isotope and elemental behaviour during subduction of oceanic crust and the implications for mantle recycling. Earth Planet Sci Lett 253:211–225Google Scholar
  27. Davies RM, Griffin WL, Pearson NJ, Andrew AS, Doyle BJ, O’Reilly SY (1999) Diamonds from the deep: Pipe DO-27, Slave Craton, Canada. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) 7th international Kimb Conference, Red Roof Design cc, Cape Town, pp 148–155Google Scholar
  28. Davis WJ, Canil D, MacKenzie JM, Carbno GB (2003) Petrology and U-Pb geochronology of lower crustal xenoliths and the development of a craton, Slave Province, Canada. Lithos 71:541–573Google Scholar
  29. Dawson JB (1984) Contrasting types of upper-mantle metasomatism? In: Kornprobst J (ed) Kimberlites II: The mantle and crust-mantle relationships, Elsevier, Amsterdam, pp 282–331Google Scholar
  30. Day JMD, Pearson DG, Macpherson CG, Lowry D, Carracedo JC (2009) Pyroxenite-rich mantle formed by recycled oceanic lithosphere: oxygen-osmium isotope evidence from Canary Island lavas. Geology 37:555–558Google Scholar
  31. De Hoog JCM, Gall L, Cornell DH (2010) Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270:196–215Google Scholar
  32. de Wit MJ, Roering C, Hart RJ, Armstrong RA, de Ronde CEJ, Green RWE, Tredoux M, Peberdy E, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562Google Scholar
  33. Deines P, Harris JW (1995) Sulfide inclusion chemistry and carbon isotopes of African diamonds. Geochim Cosmochim Acta 59:3173–3188Google Scholar
  34. Evans T, Harris JW (1989) Nitrogen aggregation, inclusion equilibration temperatures and the age of diamonds. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and related rocks. Geol Soc Australia Spec Pub, Carlton, pp 1001–1006Google Scholar
  35. Francis D (2003) Cratonic mantle roots, remnants of a more chondritic Archean mantle? Lithos 71:135–152Google Scholar
  36. Fyfe WS (1978) Evolution of Earth’s crust—modern plate tectonics to ancient hot spot tectonics? Chem Geol 23:89–114Google Scholar
  37. Graham S, Lambert DD, Shee SR, Smith CB, Reeves S (1999) Re-Os isotopic evidence for Archean lithospheric mantle beneath the Kimberley block, Western Australia. Geology 27:431–434Google Scholar
  38. Griffin WL, Doyle BJ, Ryan CG, Pearson NJ, O’Reilly SY, Davies R, Kivi K, Van Achterbergh E, Natapov LM (1999) Layered mantle lithosphere in the Lac de Gras area, Slave Craton: composition, structure and origin. J Petrol 40:705–727Google Scholar
  39. Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precambr Res 127:19–41Google Scholar
  40. Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V, Pokhilenko N (2004) Lithosphere mapping beneath the North American plate. Lithos 77:873–922Google Scholar
  41. Grütter HS, Apter DB, Kong J (1999) Crust-Mantle coupling: evidence from mantle-derived xenocrystic garnets. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson S (eds) 7th Int Kimberlite Conf. Red Roof Design cc, Cape Town, pp 307–312Google Scholar
  42. Gurenko AA, Sobolev AV, Hoernle KA, Hauff F, Schmincke HU (2009) Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: a mixed-up mantle. Earth Planet Sci Lett 277:514–524Google Scholar
  43. Gurney JJ, Harte B (1980) Chemical variations in upper mantle nodules from southern African kimberlites. Philos T Roy Soc A 297:273–293Google Scholar
  44. Harris JW (1992) Diamond geology. In: Field JE (ed) The properties of natural and synthetic diamond. Academic Press, London, pp 345–393Google Scholar
  45. Heaman LM, Pearson DG (2010) Nature and Evolution of the Slave Subcontinental Lithospheric Mantle. Can J Earth Sci 47:369–388Google Scholar
  46. Heaman LM, Kjarsgaard BA, Creaser RA (2004) The temporal evolution of North American kimberlites. Lithos 76:377–397Google Scholar
  47. Helmstaedt H (2009) Crust-mantle coupling revisited: the Archean Slave craton, NWT, Canada. Lithos 112:1055–1068Google Scholar
  48. Helmstaedt H, Schulze DJ (1989) Southern African kimberlites and their mantle sample; implications for Archean tectonics and lithosphere evolution. In: Rushmer R (ed) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 67–91Google Scholar
  49. Herzberg CT (1993) Lithosphere peridotites of the Kaapvaal Craton. Earth Planet Sci Lett 120:13–29Google Scholar
  50. Herzberg C (1995) Generation of plume magmas through time—an experimental perspective. Chem Geol 126:1–16Google Scholar
  51. Herzberg CT (1999) Phase equilibrium constraints on the formation of cratonic mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle Petrology: Field Observations and High-pressure Experimentation. Geochem Soc Spec Pub, Washington, pp 241–257Google Scholar
  52. Herzberg C, O’Hara MJ (1998) Phase equilibrium constraints on the origin of basalts, picrites, and komatiites. Earth Sci Rev 44:39–79Google Scholar
  53. Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett 57:421–436Google Scholar
  54. Hopkins M, Harrison TM, Manning CE (2008) Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456:493–496Google Scholar
  55. Ionov DA (2010) Petrology of mantle wedge lithosphere: new data on supra-subduction zone peridotite xenoliths from the andesitic Avacha Volcano, Kamchatka. J Petrol 51:327–361Google Scholar
  56. Ishimaru S, Arai S, Ishida Y, Shirasaka M, Okrugin VM (2007) Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, Southern Kamchatka. J Petrol 48:395–433Google Scholar
  57. Jordan TH (1988) Structure and formation of the continental tectosphere. J Petrol Spec, 11–38Google Scholar
  58. Kawamoto T, Holloway JR (1997) Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals. Science 276:240–243Google Scholar
  59. Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406Google Scholar
  60. Kerrich R, Wyman D, Hollings P, Polat A (1999) Variability of Nb/U and Th/La in 3.0–2.7 Ga Superior Province ocean plateau basalts: implications for the timing of continental growth and lithosphere recycling. Earth Planet Sci Lett 168:101–115Google Scholar
  61. Kesson SE, Ringwood AE (1989) Slab-mantle interactions 2: the formation of diamonds. Chem Geol 78:97–118Google Scholar
  62. Ketchum JWF, Bleeker W (2001) 4.03–2.85 Ga growth and Modification of the slave protocraton, Northwestern Canada. Slave-Kaapvaal Workshop, MerrickvilleGoogle Scholar
  63. Kogiso T, Hirschmann MM (2006) Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet Sci Lett 249:188–199Google Scholar
  64. Kogiso T, Hirschmann MM, Pertermann M (2004) High-pressure partial melting of mafic lithologies in the mantle. J Petrol 45:2407–2422Google Scholar
  65. Koornneef JM, Davies GR, Dopp SP, Vukmanovic Z, Nikogosian IK, Mason PRD (2009) Nature and timing of multiple metasomatic events in the sub-cratonic lithosphere beneath Labait, Tanzania. Lithos 112:896–912Google Scholar
  66. Kopylova MG, Caro G (2004) Mantle xenoliths from the Southeastern Slave craton: evidence for chemical zonation in a thick, cold lithosphere. J Petrol 45:1045–1067Google Scholar
  67. Kopylova MG, Russell JK (2000) Chemical stratification of cratonic lithosphere: constraints from the Northern Slave craton, Canada. Earth Planet Sci Lett 181:71–87Google Scholar
  68. Kusky TM (1989) Accretion of the Archean Slave province. Geology 17:63–67Google Scholar
  69. Leahy K, Taylor WR (1997) The influence of the Glennie domain deep structure on the diamonds in Saskatchewan kimberlites. Geol Geofiz 38:451–460Google Scholar
  70. Ludwig KR (1999) Isoplot/Ex version 2.00; a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center, Berkeley, p 46Google Scholar
  71. Luguet A, Pearson DG, Nowell GM, Dreher ST, Coggon JA, Spetsius ZV, Parman SW (2008) Enriched Pt-Re-Os isotope systematics in plume lavas explained by metasomatic sulfides. Science 319:453–456Google Scholar
  72. MacKenzie JM, Canil D (1999) Composition and thermal evolution of cratonic mantle beneath the central Archean Slave Province, NWT, Canada. Contrib Mineral Petrol 134(4):313–324Google Scholar
  73. McDonough WF, Sun S-s (1995) The composition of the earth: chemical evolution of the mantle. Chem Geol 120:223–253Google Scholar
  74. Meisel T, Walker RJ, Irving AJ, Lorand J-P (2001) Osmium isotopic compositions of mantle xenoliths: a global perspective. Geochim Cosmochim Acta 65:1311–1323Google Scholar
  75. Meyer HOA (1987) Inclusions in diamond. In: Nixon PH (ed) Mantle Xenoliths. Wiley, Chichester, pp 501–522Google Scholar
  76. Neumann ER, Simon NSC (2009) Ultra-refractory mantle xenoliths from ocean islands: how do they compare to peridotites retrieved from oceanic sub-arc mantle? Lithos 107:1–16Google Scholar
  77. Nisbet EG, Cheadle MJ, Arndt NT, Bickle MJ (1993) Constraining the potential temperature of the Archean mantle—review of the evidence from komatiites. Lithos 30:291–307Google Scholar
  78. Parman SW, Dann JC, Grove TL, de Wit MJ (1997) Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 150:303–323Google Scholar
  79. Pearson DG, Shirey SB, Harris JW, Carlson RW (1998) Sulphide inclusions in diamonds from the Koffiefontein kimberlite, S Africa: constraints on diamond ages and mantle Re-Os systematics. Earth Planet Sci Lett 160:311–326Google Scholar
  80. Pearson NJ, Griffin WL, Doyle BJ, O’Reilly SY, van Achterbergh E, Kivi K (1999) Xenoliths from kimberlite pipes of the Lac de gras area, Slave Craton, Canada. In: 7th international Kimb Conference, Red Roof Design CC, Cape Town, South Africa, pp 644–658Google Scholar
  81. Pietranik AB, Hawkesworth CJ, Storey CD, Kemp AIS, Sircombe KN, Whitehouse MJ, Bleeker W (2008) Episodic, mafic crust formation from 4.5 to 2.8 Ga: new evidence from detrital zircons, Slave craton, Canada. Geology 36:875–878Google Scholar
  82. Puchtel I, Humayun M (2000) Platinum group elements in Kostomuksha komatiites and basalts: implications for oceanic crust recycling and core-mantle interaction. Geochim Cosmochim Acta 64:4227–4242Google Scholar
  83. Puchtel IS, Brugmann GE, Hofmann AW (2001) Os-187-enriched domain in an Archean mantle plume: evidence from 2.8 Ga komatiites of the Kostomuksha greenstone belt, NW Baltic Shield. Earth Planet Sci Lett 186:513–526Google Scholar
  84. Puchtel IS, Walker RJ, Anhaeusser CR, Gruau G (2009a) Re-Os isotope systematics and HSE abundances of the 3.5 Ga Schapenburg komatiites, South Africa: hydrous melting or prolonged survival of primordial heterogeneities in the mantle? Chem Geol 262:355–369Google Scholar
  85. Puchtel IS, Walker RJ, Brandon AD, Nisbet EG (2009b) Pt-Re-Os and Sm-Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites. Geochim Cosmochim Acta 73:6367–6389Google Scholar
  86. Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356Google Scholar
  87. Rapp RP, Norman MD, Laporte D, Yaxley GM, Martin H, Foley SF (2010) Continent formation in the Archean and chemical evolution of the cratonic lithosphere: melt-rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-Diorites (Sanukitoids). J Petrol 51:1237–1266Google Scholar
  88. Richardson SH, Gurney JJ, Erlank AJ, Harris JW (1984) Origin of diamonds in old enriched mantle. Nature 310:198–202Google Scholar
  89. Richardson SH, Shirey SB, Harris JW, Carlson RW (2001) Archean subduction recorded by Re-Os isotopes in eclogitic sulfide inclusions in Kimberley diamonds. Earth Planet Sci Lett 191:257–266Google Scholar
  90. Ringwood AE (1990) Slab-mantle interactions. 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem Geol 82:187–207Google Scholar
  91. Rudnick RL (1995) Making continental crust. Nature 378:571–578Google Scholar
  92. Saltzer RL, Chatterjee N, Grove TL (2001) The spatial distribution of garnets and pyroxenes in mantle peridotites: pressure-temperature history of peridotites from the Kaapvaal craton. J Petrol 42:2215–2229Google Scholar
  93. Shirey SB (1997) Re-Os isotopic compositions of midcontinent rift system picrites: Implications for plume-lithosphere interaction and enriched mantle sources. Can J Earth Sci 34:489–503Google Scholar
  94. Shirey SB, Walker RJ (1998) The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. Ann Rev Earth Planet Sci 26:423–500Google Scholar
  95. Shirey SB, Kamber BS, Whitehourse MJ, Mueller PA, Basu AR (2008) A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: implications for the onset of plate tectonics. In: Condie KC, Pease V (eds) When did plate tectonics begin on planet earth? Geol Soc Am Spec Pub, Boulder, pp 1–29Google Scholar
  96. Sircombe KN, Bleeker W, Stern RA (2001) Detrital zircon geochronology and grain-size analysis of a similar to 2,800 Ma Mesoarchean proto-cratonic cover succession, Slave Province, Canada. Earth Planet Sci Lett 189:207–220Google Scholar
  97. Smoliar MI, Walker RJ, Morgan JW (1996) Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 271:1099–1102Google Scholar
  98. Snyder DB (2008) Stacked uppermost mantle layers within the Slave craton of NW Canada as defined by anisotropic seismic discontinuities. Tectonics 27, TC4006, doi: 10.1029/2007TC002132
  99. Sobolev NV (1977) Deep-seated inclusions in kimberlites and the problem of the composition of the upper mantle, Am Geophys. Union, Washington, p 279Google Scholar
  100. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung SL, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417Google Scholar
  101. Stachel T, Harris JW (2008) The origin of cratonic diamonds—constraints from mineral inclusions: the genesis of gem deposits. Ore Geology Rev 34:5–32Google Scholar
  102. Stachel T, Harris JW, Tappert R, Brey GP (2003) Peridotitic diamonds from the Slave and the Kaapvaal cratons—similarities and differences based on a preliminary data set. Lithos 71:489–503Google Scholar
  103. Taylor WR, Jaques AL, Ridd M (1990) Nitrogen-defect aggregation characteristics of some Australasian diamonds: time-temperature constraints on the source regions of pipe and alluvial diamonds. Am Miner 75:1290–1310Google Scholar
  104. Ueda K, Gerya T, Sobolev SV (2008) Subduction initiation by thermal-chemical plumes: numerical studies. Phys Earth Planet Int 171:296–312Google Scholar
  105. Van Kranendonk MJ, Smithies RH, Hickman AH, Champion DC (2007) Review: secular tectonic evolution of Archean continental crust: interplay between horizontal and vertical processes in the formation of the Pilbara Craton, Australia. Terra Nova 19:1–38Google Scholar
  106. Wagner LS, Anderson ML, Jackson JM, Beck SL, Zandt G (2008) Seismic evidence for orthopyroxene enrichment in the continental lithosphere. Geology 36:935–938Google Scholar
  107. Walker RJ, Nisbet E (2002) Os-187 isotopic constraints on Archean mantle dynamics. Geochim Cosmochim Acta 66:3317–3325Google Scholar
  108. Walker RJ, Morgan JW, Hanski EJ, Smolkin VF (1997) Re-Os systematics of early proterozoic ferropicrites, pechenga complex, Northwestern Russia: evidence for ancient Os-187-enriched plumes. Geochim Cosmochim Acta 61:3145–3160Google Scholar
  109. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60Google Scholar
  110. Walter MJ (2005) Melt extraction and compositional variability in mantle lithosphere. In: Holland HD, Turekian KK, Carlson RW (eds) Treatise on Geochemistry, vol 2. The Mantle and the Core. Elsevier Pergamon, Amsterdam, pp 363–394Google Scholar
  111. Westerlund KJ, Shirey SB, Richardson SH, Carlson RW, Gurney JJ, Harris JW (2006) A subduction wedge origin for Paleoarchean peridotitic diamonds and harzburgites from the Panda kimberlite, Slave craton: evidence from Re-Os isotope systematics. Contrib Mineral Petrol 152:275–294Google Scholar
  112. Wyman DA, Kerrich R (2002) Formation of Archean continental lithospheric roots: the role of mantle plumes. Geology 30:543–546Google Scholar
  113. Yasuda A, Fujii T, Kurita K (1994) Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behaviour of subducted oceanic crust in the mantle. J Geophys Res 99:9401–9414Google Scholar
  114. Yaxley GM, Green DH (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz Miner Petrog 78:243–255Google Scholar
  115. Yaxley GM, Sobolev AV (2007) High-pressure partial melting of gabbro and its role in the Hawaiian magma source. Contrib Mineral Petrol 154:371–383Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sonja Aulbach
    • 1
    • 3
  • Thomas Stachel
    • 1
  • Larry M. Heaman
    • 1
  • Robert A. Creaser
    • 1
  • Steven B. Shirey
    • 2
  1. 1.Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Terrestrial MagnetismCarnegie Institution of WashingtonWashingtonUSA
  3. 3.Facheinheit MineralogieGoethe-UniversitätFrankfurt am MainGermany

Personalised recommendations