Contributions to Mineralogy and Petrology

, Volume 161, Issue 6, pp 845–861 | Cite as

Multistage melt/fluid-peridotite interactions in the refertilized lithospheric mantle beneath the North China Craton: constraints from the Li–Sr–Nd isotopic disequilibrium between minerals of peridotite xenoliths

  • Yan-Jie Tang
  • Hong-Fu Zhang
  • Eizo Nakamura
  • Ji-Feng Ying
Original Paper


Elemental and Li–Sr–Nd isotopic data of minerals in spinel peridotites hosted by Cenozoic basalts allow us to refine the existing models for Li isotopic fractionation in mantle peridotites and constrain the melt/fluid-peridotite interaction in the lithospheric mantle beneath the North China Craton. Highly elevated Li concentrations in cpx (up to 24 ppm) relative to coexisting opx and olivine (<4 ppm) indicate that the peridotites experienced metasomatism by mafic silicate melts and/or fluids. The mineral δ7Li vary greatly, with olivine (+0.7 to +5.4‰) being isotopically heavier than coexisting opx (−4.4 to −25.9‰) and cpx (−3.3 to −21.4‰) in most samples. The δ7Li in pyroxenes are considerably lower than the normal mantle values and show negative correlation with their Li abundances, likely due to recent Li ingress attended by diffusive fractionation of Li isotopes. Two exceptional samples have olivine δ7Li of −3.0 and −7.9‰, indicating the existence of low δ7Li domains in the mantle, which could be transient and generated by meter-scale diffusion of Li during melt/fluid-peridotite interaction. The 143Nd/144Nd (0.5123–0.5139) and 87Sr/86Sr (0.7018–0.7062) in the pyroxenes also show a large variation, in which the cpx are apparently lower in 87Sr/86Sr and slightly higher in 143Nd/144Nd than coexisting opx, implying an intermineral Sr–Nd isotopic disequilibrium. This is observed more apparently in peridotites having low 87Sr/86Sr and high 143Nd/144Nd ratios than in those with high 87Sr/86Sr and low 143Nd/144Nd, suggesting that a relatively recent interaction existed between an ancient metasomatized lithospheric mantle and asthenospheric melt, which transformed the refractory peridotites with highly radiogenic Sr and unradiogenic Nd isotopic compositions to the fertile lherzolites with unradiogenic Sr and radiogenic Nd isotopic compositions. Therefore, we argue that the lithospheric mantle represented by the peridotites has been heterogeneously refertilized by multistage melt/fluid-peridotite interactions.


Peridotite xenoliths Lithium isotope Melt/fluid-peridotite interaction Lithospheric mantle North China Craton 



We are very grateful to Moriguti Takuya, Kobayashi Katsura and Akio Makishima for their help in clean lab works to Chie Sakaguchi and Hiroshi Kitagawa for their assistance for Sr–Nd isotopic analysis. We acknowledge the valuable comments by Paul Tomascak, Horst Marschall, Sonja Aulbach, Bjorn Mysen, Ralf Halama and an anonymous reviewer and editorial suggestions of Timothy L. Grove, which helped to improve the different versions of the manuscript. Inspiring discussions with Horst Marschall, Feng Guo and Wei Yang were highly appreciated. This research was financially supported by the Natural Science Foundation of China (90714008, 40773026 and 40534022), the State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, CAS (0808), and the program of COE-21 designated to the Institute for Study of the Earth’s Interior, Okayama University, Japan.


  1. Agostini S, Ryan JG, Tonarini S, Innocenti F (2008) Drying and dying of a subducted slab: coupled Li and B isotope variations in Western Anatolia Cenozoic Volcanism. Earth Planet Sci Lett 272:139–147CrossRefGoogle Scholar
  2. Anders E, Grevesse N (1989) Abundances of the elements: meteoritic and solar. Geochim Cosmochim Acta 53:197–214CrossRefGoogle Scholar
  3. Aulbach S, Rudnick RL (2009) Origins of non-equilibrium lithium isotope fractionation in xenolithic peridotite minerals: examples from Tanzania. Chem Geol 258:17–27CrossRefGoogle Scholar
  4. Aulbach S, Rudnick RL, McDonough WF (2008) Li–Sr–Nd isotope signatures of the plume and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian craton (Labait). Contrib Mineral Petrol 155:79–92CrossRefGoogle Scholar
  5. Basu A, Murthy VR (1976) Sr isotopes and trace elements in spinel lherzolite xenoliths in basalts, San Quintin, Baja California. EOS Trans Am Geophys Union 57:354 (abstract)Google Scholar
  6. Beck P, Chaussidon M, Barrat JA, Gillet P, Bohn M (2006) Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim Cosmochim Acta 70:4813–4825CrossRefGoogle Scholar
  7. Bodinier JL, Menzies MA, Shimizu N, Frey FA, McPherson E (2004) Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt-harzburgite reaction. J Petrol 45:299–320CrossRefGoogle Scholar
  8. Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26CrossRefGoogle Scholar
  9. Brenan JM, Ryerson FJ, Shaw HF (1998) The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochim Cosmochim Acta 62:3337–3347CrossRefGoogle Scholar
  10. Burwell ADM (1975) Rb-Sr isotope geochemistry of lherzolites and their constituent minerals from Victoria, Australia. Earth Planet Sci Lett 28:69–78CrossRefGoogle Scholar
  11. Carlson RW, Irving AJ, Schulze DJ, Hearn BC (2004) Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen. Lithos 77:453–472CrossRefGoogle Scholar
  12. Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts: implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160CrossRefGoogle Scholar
  13. Chan LH, Lassiter JC, Hauri EH, Hart SR, Blusztajn J (2009) Lithium isotope systematics of lavas from the Cook-Austral Islands: Constraints on the origin of HIMU mantle. Earth Planet Sci Lett 277:433–442CrossRefGoogle Scholar
  14. Chen SH, O’Reilly SY, Zhou XH, Griffin WL, Zhang GH, Sun M, Feng JL, Zhang M (2001) Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean Craton, China: evidence from xenoliths. Lithos 56:267–301CrossRefGoogle Scholar
  15. Chi JS, Lu FX (1996) Kimberlites on the North China Craton and features of Paleozoic lithospheric mantle. China Science Press, Beijing (in Chinese)Google Scholar
  16. Coogan LA, Kasemann SA, Chakraborty S (2005) Rates of hydrothermal cooling of new oceanic upper crust derived from lithium-geospeedometry. Earth Planet Sci Lett 240:415–424CrossRefGoogle Scholar
  17. Dobbs PN, Duncan DJ, Hu S, Shee SR, Colgan E, Brown MA, Smith CB, Allsopp HL (1994) The geology of the Mengyin kimberlites, Shandong, China. In: Meyer HOA, Leonardos OH (eds) Diamonds: characterization, genesis and exploration, Proceedings of 5th international Kimb conference 1. CPRM, Brasilia, pp 106–115Google Scholar
  18. Dohmen R, Kasemann SA, Coogan L, Chakraborty S (2010) Diffusion of Li in olivine. Part I: experimental observations and a multi species diffusion model. Geochim Cosmochim Acta 74:274–292CrossRefGoogle Scholar
  19. Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of western and central Europe. J Petrol 42:233–250CrossRefGoogle Scholar
  20. Elliott T, Thomas A, Jeffcoate A, Niu YL (2006) Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443:565–568CrossRefGoogle Scholar
  21. Fan QC, Hooper PR (1989) The mineral chemistry of ultramafic xenoliths of Eastern China-implications for upper mantle composition and the paleogeotherms. J Petrol 30:1117–1158Google Scholar
  22. Fan WM, Menzies MA (1992) Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia 16:171–180Google Scholar
  23. Fan WM, Zhang HF, Baker J, Jarvis KE, Mason PRD, Menzies MA (2000) On and off the north China craton: Where is the Archaean keel? J Petrol 41:933–950CrossRefGoogle Scholar
  24. Foley SF (2008) Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci 1:503–510CrossRefGoogle Scholar
  25. Gallagher K, Elliott T (2009) Fractionation of lithium isotopes in magmatic systems as a natural consequence of cooling. Earth Planet Sci Lett 278:286–296CrossRefGoogle Scholar
  26. Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS (2002) Re–Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett 198:307–322CrossRefGoogle Scholar
  27. Griffin WL, O’Reilly SY, Ryan CG (1992) Composition and thermal structure of the lithosphere beneath South Africa, Siberia and China: proton microprobe studies. In: International symposium on cenozoic volcanic rocks and deep-seated xenoliths of China and its environs, pp 65–66Google Scholar
  28. Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003) The origin and evolution of Archean lithospheric mantle. Precam Res 127:19–41CrossRefGoogle Scholar
  29. Halama R, McDonough WF, Rudnick RL, Bell K (2008) Tracking the lithium isotopic evolution of the mantle using carbonatites. Earth Planet Sci Lett 265:726–742CrossRefGoogle Scholar
  30. Halama R, Savov IP, Rudnick RL, McDonough WF (2009) Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contrib Miner Petrol 158:197–222CrossRefGoogle Scholar
  31. He GZ (1987) Mantle xenoliths from kimberlites in China. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, pp 182–185Google Scholar
  32. Herzberg CT (1993) Lithosphere peridotites of the Kaapvaal Craton. Earth Planet Sci Lett 120:13–29CrossRefGoogle Scholar
  33. Huh Y, Chan LH, Zhang L, Edmond JM (1998) Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochim Cosmochim Acta 62:2039–2051CrossRefGoogle Scholar
  34. Ionov DA, Seitz HM (2008) Lithium abundances and isotopic compositions in mantle xenoliths from subduction and intra-plate settings: mantle sources vs. eruption histories. Earth Planet Sci Lett 266:316–331CrossRefGoogle Scholar
  35. Ionov DA, Mukasa SB, Bodinier JL (2002) Sr–Nd–Pb isotopic compositions of peridotite xenoliths from Spitsbergen: numerical modelling indicates Sr–Nd decoupling in the mantle by melt percolation metasomatism. J Petrol 43:2261–2278CrossRefGoogle Scholar
  36. Jagoutz E (1988) Nd and Sr systematics in an eclogite xenolith from Tanzania: evidence for frozen mineral equilibria in the continental lithosphere. Geochim Cosmochim Acta 52:1285–1293CrossRefGoogle Scholar
  37. Jagoutz E, Carlson RW, Lugmair GW (1980) Equilibrated Nd-unequilibrated Sr isotopes in mantle xenoliths. Nature 286:708–710CrossRefGoogle Scholar
  38. Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218CrossRefGoogle Scholar
  39. Kaliwoda M, Ludwig T, Altherr R (2008) A new SIMS study of Li, Be, B and δ7Li in mantle xenoliths from Harrat Uwayrid (Saudi Arabia). Lithos 106:261–279CrossRefGoogle Scholar
  40. Kobayashi K, Tanaka R, Moriguti T, Shimizu K, Nakamura E (2004) Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chem Geol 212:143–161CrossRefGoogle Scholar
  41. Košler J, Magna T, Mlcoch B, Mixa P, Nýlt D, Holub FV (2009) Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chem Geol 258:207–218CrossRefGoogle Scholar
  42. Kushiro I (2001) Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annu Rev Earth Planet Sci 29:71–107CrossRefGoogle Scholar
  43. Lee CTA, Oka M, Luffi P, Agranier A (2008) Internal distribution of Li and B in serpentinites from the Feather River Ophiolite, California, based on laser ablation inductively coupled plasma mass spectrometry. Geochem Geophys Geosyst 9. doi: 12010.11029/12008GC002078
  44. Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remnants of 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20:339–342CrossRefGoogle Scholar
  45. Lundstrom CC, Chaussidon M, Hsui AT, Kelemen P, Zimmerman M (2005) Observations of Li isotopic variations in the Trinity Ophiolite: Evidence for isotopic fractionation by diffusion during mantle melting. Geochim Cosmochim Acta 69:735–751CrossRefGoogle Scholar
  46. Ma JL, Xu YG (2006) Old EM1-type enriched mantle under the middle North China Craton as indicated by Sr and Nd isotopes of mantle xenoliths from Yangyuan, Hebei Province. Chin Sci Bullet 51:1343–1349CrossRefGoogle Scholar
  47. Magna T, Wiechert U, Halliday AN (2006) New constraints on the lithium isotope compositions of the Moon and terrestrial planets. Earth Planet Sci Lett 243:336–353CrossRefGoogle Scholar
  48. Magna T, Ionov DA, Oberli F, Wiechert U (2008) Links between mantle metasomatism and lithium isotopes: Evidence from glass-bearing and cryptically metasomatized xenoliths from Mongolia. Earth Planet Sci Lett 276:214–222CrossRefGoogle Scholar
  49. Makishima A, Nakamura E (2006) Determination of major, minor and trace elements in silicate samples by ICP-QMS and ICP-SFMS applying isotope dilution-internal standardisation (ID-IS and multi-stage internal standardisation). Geostand Geoanal Res 30:245–271CrossRefGoogle Scholar
  50. Marks MAW, Rudnick RL, McCammon C, Vennemann T, Markl G (2007) Arrested kinetic Li isotope fractionation at the margin of the llimaussaq complex, South Greenland: Evidence for open-system processes during final cooling of peralkaline igneous rocks. Chem Geol 246:207–230CrossRefGoogle Scholar
  51. Marschall HR, Pogge von Strandmann PAE, Seitz HM, Elliott T, Niu Y (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580CrossRefGoogle Scholar
  52. McDonough WF, McCulloch MT (1987) The southeast Australian lithospheric mantle: isotopic and geochemical constraints on its growth and evolution. Earth Planet Sci Lett 86:327–340CrossRefGoogle Scholar
  53. McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  54. Menzies MM, Murthy VR (1978) Strontium isotope geochemistry of alpine tectonite lherzolites: data compatible with a mantle origin. Earth Planet Sci Lett 38:346–354CrossRefGoogle Scholar
  55. Menzies M, Murthy VR (1980) Enriched mantle: Nd and Sr isotopes in diopsides from kimberlite nodules. Nature 283:634–636CrossRefGoogle Scholar
  56. Menzies MA, Fan WM, Zhang M (1993) Palaeozoic and Cenozoic lithoprobes and the loss of >120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geol Soc London, vol 76, pp 71–81Google Scholar
  57. Menzies M, Xu YG, Zhang HF, Fan WM (2007) Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96:1–21CrossRefGoogle Scholar
  58. Meyer HOA, Waldman MA, Garwood BL (1994) Mantle xenoliths from kimberlite near Kirkland Lake, Ontario. Can Miner 32:295–306Google Scholar
  59. Moriguti T, Nakamura E (1998) High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples. Chem Geol 145:91–104CrossRefGoogle Scholar
  60. Moriguti T, Makishima A, Nakamura E (2004) Determination of Lithium contents in silicates by isotope dilution ICP-MS and its evaluation by isotope dilution thermal ionisation mass spectrometry. Geostand Geoanal Res 28:371–382CrossRefGoogle Scholar
  61. Nakamura E, Makishima A, Moriguti T, Kobayashi K, Sakaguchi C, Yokoyma T, Tanaka R, Kuritani T, Takei H (2003) Comprehensive geochemical analyses of small amounts (<100 mg) of extraterrestrial samples for the analytical competition related to the sample return mission MUSES-C. In: Kushiro I, Fujiwara A, Yano H (eds) Asteroidal sample preliminary examination team, Inst Space and Astron Sci Report SP, vol 16, pp 49–101Google Scholar
  62. Navon O, Stolper E (1987) Geochemical consequence of melt percolation-the upper mantle as a chromatographic column. J Geol 95:285–307CrossRefGoogle Scholar
  63. Nishio Y, Shun’ichi N, Yamamoto J, Sumino H, Matsumoto T, Prikhod’ko VS, Arai S (2004) Lithium isotopic systematics of the mantle-derived ultramafic xenoliths: implications for EM1 origin. Earth Planet Sci Lett 217:245–261CrossRefGoogle Scholar
  64. Ottolini L, Laporte D, Raffone N, Devidal JL, Le FB (2009) New experimental determination of Li and B partition coefficients during upper mantle partial melting. Contrib Miner Petrol 157:313–325CrossRefGoogle Scholar
  65. Parkinson IJ, Hammond SJ, James RH, Rogers NW (2007) High-temperature lithium isotope fractionation: insights from lithium isotope diffusion in magmatic systems. Earth Planet Sci Lett 257:609–621CrossRefGoogle Scholar
  66. Paul DK (1971) Strontium isotope studies on ultramafic inclusions from Dreiser Weiher, Eifel, Germany. Contrib Miner Petrol 34:22–28CrossRefGoogle Scholar
  67. Penniston-Dorland SC, Sorensen SS, Ash RD, Khadke SV (2010) Lithium isotopes as a tracer of fluids in a subduction zone mélange: Franciscan Complex, CA. Earth Planet Sci Lett 292:181–190CrossRefGoogle Scholar
  68. Qian Q, O’Neill HSC, Hermann J (2010) Comparative diffusion coefficients of major and trace elements in olivine at 950°C from a xenocryst included in dioritic magma. Geology 38:331–334CrossRefGoogle Scholar
  69. Richardson SH, Erlank AJ, Hart SR (1985) Kimberlite-borne garnet peridotite xenoliths from old enriched subcontinental lithosphere. Earth Planet Sci Lett 75:116–128CrossRefGoogle Scholar
  70. Richter FM, Davis AM, Depaolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalts and rhyolite. Geochim Cosmochim Acta 67:3905–3923CrossRefGoogle Scholar
  71. Richter FM, Dauphas N, Teng FZ (2009) Non-traditional fractionation of non-traditional isotopes: evaporation, chemical diffusion and Soret diffusion. Chem Geol 258:92–103CrossRefGoogle Scholar
  72. Rudnick RL, Ionov DA (2007) Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from far-east Russia: product of recent melt/fluid-rock reaction. Earth Planet Sci Lett 256:278–293CrossRefGoogle Scholar
  73. Rudnick RL, Gao S, Ling WL, Liu YS, McDonough WF (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos 77:609–637CrossRefGoogle Scholar
  74. Seitz HM, Woodland AB (2000) The distribution of lithium in peridotitic and pyroxenitic mantle lithologies—an indicator of magmatic and metasomatic processes. Chem Geol 166:47–64CrossRefGoogle Scholar
  75. Seitz HM, Brey GP, Lahaye Y, Durali S, Weyer S (2004) Lithium isotopic signatures of peridotite xenoliths and isotopic fractionation at high temperature between olivine and pyroxenes. Chem Geol 212:163–177CrossRefGoogle Scholar
  76. Simon NSC, Carlson RW, Pearson DG, Davies GR (2007) The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J Petrol 48:589–625CrossRefGoogle Scholar
  77. Sneeringer M, Hart SR, Shimizu N (1984) Strontium and samarium diffusion in diopside. Geochim Cosmochim Acta 48:1589–1608CrossRefGoogle Scholar
  78. Song Y, Frey FA (1989) Geochemistry of peridotite xenoliths in basalt from Hannuoba, eastern China: implications for subcontinental mantle heterogeneity. Geochim Cosmochim Acta 53:97–113CrossRefGoogle Scholar
  79. Spandler C, O’Neill H (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1,300°C with some geochemical implications. Contrib Mineral Petrol. doi: 10.1007/s00410-00009-00456-00418
  80. Stosch HG, Lugmair GW, Kovalenko VI (1986) Spinel peridotite xenoliths from the Tariat Depression, Mongolia. II: geochemistry and Nd and Sr isotopic composition and their implications for the evolution of the subcontinental lithosphere. Geochim Cosmochim Acta 50:2601–2614CrossRefGoogle Scholar
  81. Tang YJ, Zhang HF, Ying JF (2006) Asthenosphere-lithospheric mantle interaction in an extensional regime: implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem Geol 233:309–327CrossRefGoogle Scholar
  82. Tang YJ, Zhang HF, Ying JF (2007a) Review of the lithium isotope system as a geochemical tracer. Int Geol Rev 49:374–388CrossRefGoogle Scholar
  83. Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K, Ying JF (2007b) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: implications for melt-rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341CrossRefGoogle Scholar
  84. Tang YJ, Zhang HF, Ying JF, Zhang J, Liu XM (2008) Refertilization of ancient lithospheric mantle beneath the central North China Craton: evidence from petrology and geochemistry of peridotite xenoliths. Lithos 101:435–452CrossRefGoogle Scholar
  85. Tatsumoto M, Basu AR, Huang WK, Wang JW, Xie GH (1992) Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: enriched components EMI and EMII in subcontinental lithosphere. Earth Planet Sci Lett 113:107–128CrossRefGoogle Scholar
  86. Teng FZ, McDonough WF, Rudnick RL, Walker RJ (2006) Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet Sci Lett 243:701–710CrossRefGoogle Scholar
  87. Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the earth and planetary sciences. In: Johnson CM, Beard BI, Albarede F (eds) Geochemistry of non-traditional stable isotope: Reviews in Mineralogy and Geochemistry. Mineral Soc Am, vol 55, pp 153–195Google Scholar
  88. Tomascak PB, Langmuir CH (1999) Lithium isotope variability in MORB. Eos Trans AGU 80:F1086–F1087Google Scholar
  89. Tomascak PB, Carlson RW, Shirey SB (1999) Accurate and precise determination of Li isotopic compositions by multi-collector sector ICP-MS. Chem Geol 158:145–154CrossRefGoogle Scholar
  90. Tomascak PB, Ryan JG, Defant MJ (2000) Lithium isotope evidence for light element decoupling in the Panama subarc mantle. Geology 28:507–510CrossRefGoogle Scholar
  91. Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72:1626–1637CrossRefGoogle Scholar
  92. Vlastélic I, Koga K, Chauvel C, Jacques G, Télouk P (2009) Survival of lithium isotopic heterogeneities in the mantle supported by HIMU-lavas from Rurutu Island, Austral Chain. Earth Planet Sci Lett 286:456–466CrossRefGoogle Scholar
  93. Wagner C, Deloule E (2007) Behaviour of Li and its isotopes during metasomatism of French Massif Central lherzolites. Geochim Cosmochim Acta 71:4279–4296CrossRefGoogle Scholar
  94. Walter M (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60CrossRefGoogle Scholar
  95. Wang YJ, Fan WM, Zhang HF, Peng TP (2006) Early Cretaceous gabbroic rocks from the Taihang Mountains: implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton. Lithos 86:281–302CrossRefGoogle Scholar
  96. Woodland AB, Seitz HM, Yaxley GM (2004) Varying behaviour of Li in metasomatised spinel peridotite xenoliths from western Victoria, Australia. Lithos 75:55–66CrossRefGoogle Scholar
  97. Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120CrossRefGoogle Scholar
  98. Xu YG (2001) Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, timing and mechanism. Phys Chem Earth (A) 26:747–757CrossRefGoogle Scholar
  99. Xu X, O’Reilly SY, Griffin WL, Zhou X, Huang X (1998a) The nature of the Cenozoic lithosphere of Nushan, eastern China. In: Flower MFJ, Chung SL, Lo CH, Lee TY (eds) Mantle dynamics and plate interactions in East Asia. Geodynamics Series 27, AGU, Washington, pp 167–196Google Scholar
  100. Xu YG, Menzies MA, Bodinier JL, Bedini RM, Vroon P, Mercier JCC (1998b) Melt percolation and reaction atop a plume: evidence from the poikiloblastic peridotite xenoliths from Boree (Massif Central, France). Contrib Mineral Petrol 132:65–84CrossRefGoogle Scholar
  101. Xu YG, Ma JL, Frey FA, Feigenson MD, Liu JF (2005) Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem Geol 224:247–271CrossRefGoogle Scholar
  102. Xu XS, Griffin WL, O’Reilly SY, Pearson NJ, Geng HY, Zheng JP (2008a) Re–Os isotope of sulfides in mantle xenoliths from eastern China: progressive modification of lithospheric mantle. Lithos 102:43–64CrossRefGoogle Scholar
  103. Xu YG, Blusztajn J, Ma JL, Suzuki K, Liu JF, Hart SR (2008b) Late Archean to early Proterozoic lithospheric mantle beneath the western North China craton: Sr-Nd-Os isotopes of peridotite xenoliths from Yangyuan and Fansi. Lithos 102:25–42CrossRefGoogle Scholar
  104. Ying JF, Zhang HF, Kita N, Morishita Y, Shimoda G (2006) Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: Constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet Sci Lett 244:622–638CrossRefGoogle Scholar
  105. Yoshikawa M, Nakamura E (1993) Precise isotopic determination of trace amounts of Sr in magnesium-rich samples. J Jpn Soc Miner Petrol Econ Geol 88:548–561Google Scholar
  106. Zack T, Tomascak PB, Rudnick RL, Dalpé C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290CrossRefGoogle Scholar
  107. Zhang HF (2005) Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth Planet Sci Lett 237:768–780CrossRefGoogle Scholar
  108. Zhang P, Hu S, Wan G (1989) A review of the geology of some kimberlites in China. Geol Soc Spec Publ Aust 14:392–400Google Scholar
  109. Zhang HF, Sun M, Zhou XH, Fan WM, Yin JF (2002) Mesozoic lithosphere destruction beneath the North China Craton: evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Miner Petrol 144:241–253CrossRefGoogle Scholar
  110. Zhang HF, Sun M, Zhou XH, Zhou MF, Fan WM, Zheng JP (2003) Secular evolution of the lithosphere beneath the eastern North China Craton: evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta 67:4373–4387CrossRefGoogle Scholar
  111. Zhang HF, Sun M, Zhou MF, Fan WM, Zhou XH, Zhai MG (2004) Highly heterogeneous late Mesozoic lithospheric mantle beneath the north China Craton: evidence from Sr–Nd–Pb isotopic systematics of mafic igneous rocks. Geol Mag 141:55–62CrossRefGoogle Scholar
  112. Zhang HF, Nakamura E, Kobayashi K, Zhang J, Ying JF, Tang YJ, Niu LF (2007) Transformation of subcontinental lithospheric mantle through deformation-enhanced peridotite-melt reaction: evidence from a highly fertile mantle xenolith from the North China craton. Int Geol Rev 49:658–679CrossRefGoogle Scholar
  113. Zhang HF, Goldstein S, Zhou XH, Sun M, Zheng JP, Cai Y (2008) Evolution of subcontinental lithospheric mantle beneath eastern China: Re–Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Miner Petrol 155:271–293CrossRefGoogle Scholar
  114. Zhang HF, Goldstein SL, Zhou XH, Sun M, Cai Y (2009) Comprehensive refertilization of lithospheric mantle beneath the North China Craton: further Os–Sr–Nd isotopic constraints. J Geol Soc Lond 166:249–259CrossRefGoogle Scholar
  115. Zhang HF, Deloule E, Tang YJ, Ying JF (2010) Melt/rock interaction in remains of refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li isotopic evidence. Contrib Miner Petrol 160:261–277CrossRefGoogle Scholar
  116. Zhao GC, Wilde SA, Sun M, Li S, Li X, Zhang J (2008) SHRIMP U–Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen. Precam Res 160:213–226CrossRefGoogle Scholar
  117. Zhao X, Zhang H, Zhu X, Tang S, Tang Y (2010) Iron isotope variations in spinel peridotite xenoliths from North China Craton: implications for mantle metasomatism. Contrib Miner Petrol doi: 10.1007/s00410-009-0461-y
  118. Zheng JP, O’Reilly SY, Griffin W, Lu FX, Zhang M, Pearson N (2001) Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57:43–66CrossRefGoogle Scholar
  119. Zheng JP, Griffin WL, O’Reilly SY, Zhang M, Pearson N (2006) Zircons in mantle xenoliths record the Triassic Yangtze-North China continental collision. Earth Planet Sci Lett 247:130–142CrossRefGoogle Scholar
  120. Zheng JP, Griffin WL, O’Reilly SY, Yu CM, Zhang HF, Pearson N, Zhang M (2007) Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton: peridotitic xenoliths from the 100 Ma Fuxin basalts and a regional synthesis. Geochim Cosmochim Acta 71:5203–5225CrossRefGoogle Scholar
  121. Zindler A, Hart SR (1986) Chemical geodynamics. Annu Rev Earth Planet Sci 14:493–571CrossRefGoogle Scholar
  122. Zindler A, Jagoutz E (1988) Mantle cryptology. Geochim Cosmochim Acta 52:319–333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yan-Jie Tang
    • 1
  • Hong-Fu Zhang
    • 1
  • Eizo Nakamura
    • 2
  • Ji-Feng Ying
    • 1
  1. 1.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry, Institute for Study of the Earth’s InteriorOkayama University at MisasaTottori-kenJapan

Personalised recommendations