Contributions to Mineralogy and Petrology

, Volume 161, Issue 5, pp 777–789 | Cite as

Helium irradiation study on zircon

  • Lutz NasdalaEmail author
  • Dieter Grambole
  • Jens Götze
  • Ulf Kempe
  • Tamás Váczi
Original Paper


Synthetic ZrSiO4 and (mildly to strongly radiation-damaged) natural zircon samples were irradiated with 8.8 MeV 4He2+ ions (fluences in the range 1 × 1013–5 × 1016 ions/cm2). For comparison, an additional irradiation experiment was done with 30 MeV 16O6+ ions (fluence 1 × 1015 ions/cm2). The light-ion irradiation resulted in the generation of new (synthetic ZrSiO4) or additional (mildly to strongly metamict natural samples) damage. The maximum extent of the damage is observed in a shallow depth range approximately 32–33 μm (8.8 MeV He) and ~12 μm (30 MeV O) below the sample surface, i.e. near the end of the ion trajectories. These depth values, and the observed damage distribution, correspond well to defect distribution patterns as predicted by Monte Carlo simulations. The irradiation damage is recognised from the notable broadening of Raman-active vibrational modes, lowered interference colours (i.e. decreased birefringence), and changes in the optical activity (i.e. luminescence emission). At very low damage levels, a broad-band yellow emission centre is generated whereas at elevated damage levels, this centre is suppressed and samples experience a general decrease in their emission intensity. Most remarkably, there is no indication of notable structural recovery in pre-damaged natural zircon as induced by the light-ion irradiation, which questions the relevance of alpha-assisted annealing of radiation damage in natural zircon.


Zircon Ion irradiation Radiation damage Raman spectroscopy Luminescence 



Samples investigated in this study were kindly made available by J.M. Hanchar (synthetic ZrSiO4), W. Hofmeister (M144, M146, N17), and A.K. Kennedy (G168). Thanks are due to A. Wagner for the excellent sample preparation. We are indebted to W. Hofmeister and T. Häger for the opportunity to use the confocal Raman spectrometer of the Institute for Gemstone Research, Mainz, Germany. Constructive comments of two anonymous experts are gratefully acknowledged. This research was supported financially by the European Commission through contract no. MEXC-CT-2005-024878 and Research Infrastructures Transnational Access (RITA) grant no. 025646, and the Austrian Science Fund (FWF), grant P20028-N10.


  1. Babsail L, Hamelin N, Townsend PD (1991) Helium-ion implanted waveguides in zircon. Nucl Instrum Methods B 59–60:1219–1222CrossRefGoogle Scholar
  2. Balan E, Neuville DR, Trocellier P, Fritsch E, Muller JP, Calas G (2001) Metamictization and chemical durability of detrital zircon. Am Miner 86:1025–1033Google Scholar
  3. Can N, Townsend PD (1994) Anomalous annealing of zircon optical waveguides formed by implantation of helium ions. Radiat Eff Defect S 128:215–220CrossRefGoogle Scholar
  4. Chakoumakos BC, Murakami T, Lumpkin GR, Ewing RC (1987) Alpha-decay-induced fracturing in zircon: the transition from the crystalline to the metamict state. Science 236:1556–1559CrossRefGoogle Scholar
  5. Chakoumakos BC, Oliver BC, Lumpkin GR, Ewing RC (1991) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose. I. In situ α-decay event damage. Radiat Eff Defect S 118:393–403CrossRefGoogle Scholar
  6. Chaumont J, Soulet S, Krupa JC, Carpena J (2002) Competition between disorder creation and annealing in fluorapatite nuclear waste forms. J Nucl Mater 301:122–128CrossRefGoogle Scholar
  7. Davis DW, Williams IS, Krogh TE (2003) Historical development of zircon geochronology. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem, vol 53. Mineral Soc Am, Washington, pp 145–181Google Scholar
  8. Dawson P, Hargreave MM, Wilkinson GF (1971) The vibrational spectrum of zircon (ZrSiO4). J Phys C Solid State 4:240–256CrossRefGoogle Scholar
  9. Devanathan R (2009) Radiation damage evolution in ceramics. Nucl Instrum Methods B 267:3017–3021CrossRefGoogle Scholar
  10. Devanathan R, Corrales LR, Weber WJ, Chartier A, Meis C (2006) Molecular dynamics simulation of energetic uranium recoil damage in zircon. Mol Simul 32:1069–1077CrossRefGoogle Scholar
  11. Ewing RC (2001) The design and evaluation of nuclear-waste forms: clues from mineralogy. Can Miner 39:697–715CrossRefGoogle Scholar
  12. Ewing RC, Weber WJ, Clinard FW Jr (1995) Radiation effects in nuclear waste forms for high-level radioactive waste. Progr Nucl Energy 29:63–127CrossRefGoogle Scholar
  13. Ewing RC, Meldrum A, Wang LM, Weber WJ, Corrales LR (2003) Radiation effects in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem, vol 41. Mineral Soc Am, Washington, pp 387–425Google Scholar
  14. Finch RJ, Hanchar JM (2003) Structure and chemistry of zircon and zircon-group minerals. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem, vol 53. Mineral Soc Am, Washington, pp 1–25Google Scholar
  15. Fourdrin C, Balan E, Allard T, Boukari C, Calas G (2009) Induced modifications of kaolinite under ionizing radiation: an infrared spectroscopic study. Phys Chem Miner 36:291–299CrossRefGoogle Scholar
  16. Gaft M, Panczer G, Reisfeld R, Shinno I (2000) Laser-induced luminescence of rare-earth elements in natural zircon. J Alloy Compd 300–301:267–274CrossRefGoogle Scholar
  17. Gaft M, Shinno I, Panczer G, Reisfeld R (2002) Laser-induced time-resolved spectroscopy of visible broad luminescence bands in zircon. Miner Petrol 76:235–246CrossRefGoogle Scholar
  18. Geisler T, Trachenko K, Ríos S, Dove MT, Salje EKH (2003) Impact of self-irradiation damage on the aqueous durability of zircon (ZrSiO4): implications for its suitability as a nuclear waste form. J Phys Condens Matter 15:L597–L605CrossRefGoogle Scholar
  19. Gentry RV (1974) Radiohalos in a radiochronological and cosmological perspective. Science 184:62–66CrossRefGoogle Scholar
  20. Götze J, Kempe U (2008) A comparison of optical microscope- and scanning electron microscope-based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences. Miner Mag 72:909–924CrossRefGoogle Scholar
  21. Götze J, Kempe U, Habermann D, Nasdala L, Neuser RD, Richter DK (1999) High-resolution cathodoluminescence combined with SHRIMP ion probe measurements of detrital zircons. Miner Mag 63:179–187CrossRefGoogle Scholar
  22. Götze J, Plötze M, Habermann D (2001) Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz: a review. Miner Petrol 71:225–250CrossRefGoogle Scholar
  23. Hanchar JM, Finch RJ, Hoskin PWO, Watson EB, Cherniak DJ, Mariano AN (2001) Rare earth elements in synthetic zircon: Part 1. Synthesis, and rare earth element and phosphorus doping. Am Miner 86:667–680Google Scholar
  24. Heera V, Stoemenos J, Kögler R, Skorupa W (1995) Amorphization and recrystallization of 6H-SiC by ion-beam irradiation. J Appl Phys 77:2999–3009CrossRefGoogle Scholar
  25. Hendricks BWH, Redfield TF (2005) Apatite fission track and (U-Th)/He data from Fennoscandia: an example of underestimation of fission track annealing in apatite. Earth Planet Sci Lett 236:443–458CrossRefGoogle Scholar
  26. Holland HD, Gottfried D (1955) The effect of nuclear radiation on the structure of zircon. Acta Cryst 8:291–300CrossRefGoogle Scholar
  27. Hurley PM (1954) The helium age method and the distribution and migration of helium in rocks. In: Faul H (ed) Nuclear geology. Wiley, New York, pp 301–329Google Scholar
  28. Irmer G (1985) Zum Einfluß der Apparatefunktion auf die Bestimmung von Streuquerschnitten und Lebensdauern aus optischen Phononenspektren. Exp Tech Phys 33:501–506Google Scholar
  29. Kempe U, Gruner T, Nasdala L, Wolf D (2000) Relevance of cathodoluminescence for the interpretation of U–Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Heidelberg, pp 415–455Google Scholar
  30. Krasnobayev AA, Votyakov SL, Krokhalev VY (1988) Spectroscopy of zircons (properties, geological applications). Nauka, Moscow, 150 pp (in Russian)Google Scholar
  31. Krickl R, Nasdala L, Götze J, Grambole D, Wirth R (2008) Alpha-irradiation effects in SiO2. Eur J Miner 20:517–522CrossRefGoogle Scholar
  32. Kröner A, Kehelpannala KVW, Kriegsman LM (1994) Origin of compositional layering and mechanism of crustal thickening in the high-grade gneiss terrain of Sri Lanka. Precambrian Res 66:21–37CrossRefGoogle Scholar
  33. Lian J, Ríos S, Boather LA, Wang LM, Ewing RC (2003) Microstructural evolution and nanocrystal formation in Pb+-implanted ZrSiO4 single crystals. J Appl Phys 94:5695–5703CrossRefGoogle Scholar
  34. Lumpkin GR (2006) Ceramic waste forms from actinides. Elements 2:365–372CrossRefGoogle Scholar
  35. Mattinson JM (2005) Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem Geol 220:47–66CrossRefGoogle Scholar
  36. Meldrum A, Boather LA, Ewing RC (1997) Electron-irradiation-induced nucleation and growth in amorphous LaPO4, ScPO4, and zircon. J Mater Res 12:1816–1827CrossRefGoogle Scholar
  37. Meunier JD, Sellier E, Pagel M (1990) Radiation-damage rims in quartz from uranium-bearing sandstones. J Sediment Petrol 60:53–58Google Scholar
  38. Moazed C, Overbey R, Spector RM (1975) Precise determination of critical features in radiohalo-type coloration of biotite. Nature 258:315–317CrossRefGoogle Scholar
  39. Moreira PAFP, Devanathan R, Yu J, Weber WJ (2009) Molecular-dynamics simulation of threshold displacement energies in zircon. Nucl Instrum Methods B 267:3431–3436CrossRefGoogle Scholar
  40. Murakami T, Chakoumakos BC, Ewing RC, Lumpkin GR, Weber WJ (1991) Alpha-decay damage in zircon. Am Miner 76:1510–1532Google Scholar
  41. Nasdala L, Irmer G, Wolf D (1995) The degree of metamictization in zircons: a Raman spectroscopic study. Eur J Miner 7:471–478Google Scholar
  42. Nasdala L, Pidgeon RT, Wolf D, Irmer G (1998) Metamictization and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study. Miner Petrol 62:1–27CrossRefGoogle Scholar
  43. Nasdala L, Wenzel M, Vavra G, Irmer G, Wenzel T, Kober B (2001a) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contrib Miner Petrol 141:125–144CrossRefGoogle Scholar
  44. Nasdala L, Wenzel M, Andrut M, Wirth R, Blaum P (2001b) The nature of radiohaloes in biotite: experimental studies and modeling. Am Miner 86:498–512Google Scholar
  45. Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume A-M (2002) Annealing radiation damage and the recovery of cathodoluminescence. Chem Geol 191:121–140CrossRefGoogle Scholar
  46. Nasdala L, Zhang M, Kempe U, Panczer G, Gaft M, Andrut M, Plötze M (2003) Spectroscopic methods applied to zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon Rev Mineral Geochem, vol 53. Mineral Soc Am, Washington, pp 427–467Google Scholar
  47. Nasdala L, Reiners PW, Garver JI, Kennedy AK, Stern RA, Balan E, Wirth R (2004) Incomplete retention of radiation damage in zircon from Sri Lanka. Am Miner 89:219–231Google Scholar
  48. Nasdala L, Hanchar JM, Kronz A, Whitehouse MJ (2005) Long-term stability of alpha particle damage in natural zircon. Chem Geol 220:83–103CrossRefGoogle Scholar
  49. Nasdala L, Wildner M, Wirth R, Groschopf N, Pal DC, Möller A (2006) Alpha particle haloes in chlorite and cordierite. Miner Petrol 86:1–27CrossRefGoogle Scholar
  50. Nasdala L, Hofmeister W, Norberg N, Mattinson JM, Corfu F, Dörr W, Kamo SL, Kennedy AK, Kronz A, Reiners PW, Frei D, Kosler J, Wan Y, Götze J, Häger T, Kröner A, Valley JW (2008) Zircon M257—a homogeneous natural reference material for the ion microprobe U-Pb analysis of zircon. Geostand Geoanal Res 32:247–265CrossRefGoogle Scholar
  51. Nasdala L, Hanchar JM, Rhede D, Kennedy AK, Váczi T (2010) Retention of uranium in complexly altered zircon: an example from Bancroft, Ontario. Chem Geol 269:290–300CrossRefGoogle Scholar
  52. Neuser RD, Bruhn F, Götze J, Habermann D, Richter DK (1996) Kathodolumineszenz: Methodik und Anwendung. Zbl Geo Pal 1995(1/2):287–306Google Scholar
  53. Nicholas JV (1967) Origin of the luminescence in natural zircon. Nature 215:1476CrossRefGoogle Scholar
  54. Oliver WC, McCallum JC, Chakoumakos BC, Boatner LA (1994) Hardness and elastic modulus of zircon as a function of heavy-particle irradiation dose: II. Pb-ion implantation damage. Radiat Eff Defect S 132:131–141CrossRefGoogle Scholar
  55. Ouchani S, Dran J-C, Chaumont J (1997) Evidence of ionization annealing upon helium-ion irradiation of pre-damaged fluorapatite. Nucl Instrum Methods B 132:447–451CrossRefGoogle Scholar
  56. Owen MR (1988) Radiation-damage halos in quartz. Geology 16:529–532CrossRefGoogle Scholar
  57. Özkan H (1976) Effect of nuclear radiation on the elastic moduli of zircon. J Appl Phys 47:4772–4779CrossRefGoogle Scholar
  58. Pal DC (2004) Concentric rings of radioactive halo in chlorite, Turamdih uranium deposit, Singhbhum Shear Zone, Eastern India: a possible result of 238U chain decay. Curr Sci India 87:662–667Google Scholar
  59. Radlinski AP, Claoue-Long J, Hinde AL, Radlinska EZ, Lin JS (2003) Small-angle X-ray scattering measurement of the internal microstructure of natural zircon crystals. Phys Chem Miner 30:631–640CrossRefGoogle Scholar
  60. Raineri V, Galvagno G, Rimini E, Biersack JP, Nakagawa ST, La Ferla A, Carnera A (1991) Channelling implants of B ions into 〈100〉 silicon surfaces. Radiat Eff Defect S 116:211–217CrossRefGoogle Scholar
  61. Reiners PW (2005) Zircon (U–Th)/He thermochronometry. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications. Rev Mineral Geochem, vol 58. Mineral Soc Am, Washington, pp 151–179Google Scholar
  62. Rémond G, Cesbron F, Chapoulie R, Ohnenstetter D, Roques-Carmes C, Schoverer M (1992) Cathodoluminescence applied to the microcharacterization of mineral materials: a present status in experimentation and interpretation. Scanning Microsc 6:23–68Google Scholar
  63. Rizvanova NG, Levchenkov OA, Belous AE, Bezmen NI, Maslenikov AV, Komarov AN, Makeev AF, Levskiy LK (2000) Zircon reaction and stability of the U–Pb isotope system during interaction with carbonate fluid: experimental hydrothermal study. Contrib Miner Petrol 139:101–114CrossRefGoogle Scholar
  64. Sahama TG (1981) Growth structure in Ceylon zircon. Bull Minér 104:89–94Google Scholar
  65. Sahoo PK, Gąsiorek S, Lieb KP, Arstila K, Keinonen J (2005) Achieving epitaxy and intense luminescence in Ge/Rb-implanted α-quartz. Appl Phys Lett 87:021105CrossRefGoogle Scholar
  66. Seydoux-Guillaume A-M, Wirth R, Nasdala L, Gottschalk M, Montel J-M, Heinrich W (2002) An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys Chem Miner 29:240–253CrossRefGoogle Scholar
  67. Shpak AP, Grechanovsky OY, Litovchenko AS, Sayenko SY (2007) Molecular dynamics simulation of displacement cascades in zircon. Probl At Sci Tech 2007(2):29–32 (in Russian)Google Scholar
  68. Silver LT, Deutsch S (1963) Uranium–lead isotope variations in zircons: a case study. J Geol 71:721–758CrossRefGoogle Scholar
  69. Söderlund P, Juez-Larré J, Page LM, Dunai T (2005) Extending the time range of apatite (U–Th)/He thermochronometry in slowly cooled terranes: Palaeozoic to Cenozoic exhumation history of southeast Sweden. Earth Planet Sci Lett 239:266–275CrossRefGoogle Scholar
  70. Som T, Ghatak J, Sinha OP, Sivakumar R, Kanjilal D (2008) Recrystallization of ion-irradiated germanium due to intense electronic interaction. J Appl Phys 103:123532-1–123532-5CrossRefGoogle Scholar
  71. Taraschan A (1978) Luminescence of minerals. Naukova Dumka, Kiev, 296 pp (in Russian)Google Scholar
  72. Vance ER, Anderson BW (1972) Study of metamict Ceylon zircons. Miner Mag 38:605–613CrossRefGoogle Scholar
  73. Verma P, Abbi SC, Jain KP (1995) Raman-scattering probe of anharmonic effects in GaAs. Phys Rev B 51:16660–16667CrossRefGoogle Scholar
  74. Voznyak DK, Pavlishin VI, Bugaenko VN, Galaburda Yu (1996) Nature, genetic and geochronological significance of radiogenic haloes in minerals from the Polokhovskoe deposit (Ukrainian Shield). Miner Zh 18:3–7Google Scholar
  75. Wasiliewski PJ, Senftle FE, Vaz JE, Thorpe AN, Alexander CC (1973) A study of the natural α-recoil damage in zircon by infrared spectra. Radiat Eff Defect S 17:191–199CrossRefGoogle Scholar
  76. Weber WJ (1990) Radiation-induced defects and amorphization in zircon. J Mater Res 5:2687–2697CrossRefGoogle Scholar
  77. Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698CrossRefGoogle Scholar
  78. Weber WJ, Ewing RC, Catlow CRA, Dias de la Rubia T, Hobbs LW, Kinoshita C, Matzke H, Motta AT, Nastasi M, Salje EKH, Vance ER, Zinkle SJ (1998) Radiation effects in crystalline ceramics for the immobilization of high-level nuclear waste and plutonium. J Mater Res 13:1434–1484CrossRefGoogle Scholar
  79. Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Lennox H (2000) Metamictization of zircon: Raman spectroscopic study. J Phys Condens Mat 12:1915–1925CrossRefGoogle Scholar
  80. Ziegler JF, Biersack JP, Littmark U (1985) The stopping and range of ions in solids. In: Ziegler JF (ed) The stopping and ranges of ions in matter, vol 1. Pergamon Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lutz Nasdala
    • 1
    Email author
  • Dieter Grambole
    • 3
  • Jens Götze
    • 4
  • Ulf Kempe
    • 4
  • Tamás Váczi
    • 1
    • 2
  1. 1.Institut für Mineralogie und KristallographieUniversität WienViennaAustria
  2. 2.Institute for NanotechnologyBay Zoltán Foundation for Applied ResearchMiskolcHungary
  3. 3.Institut für Ionenstrahlphysik und MaterialforschungDresdenGermany
  4. 4.Institut für MineralogieTU Bergakademie FreibergFreibergGermany

Personalised recommendations