Advertisement

Contributions to Mineralogy and Petrology

, Volume 161, Issue 5, pp 743–763 | Cite as

Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon

  • Kyusei TsunoEmail author
  • Rajdeep Dasgupta
Original Paper

Abstract

We have experimentally investigated melting phase relation of a nominally anhydrous, carbonated pelitic eclogite (HPLC1) at 2.5 and 3.0 GPa at 900–1,350°C in order to constrain the cycling of sedimentary carbon in subduction zones. The starting composition HPLC1 (with 5 wt% bulk CO2) is a model composition, on a water-free basis, and is aimed to represent a mixture of 10 wt% pelagic carbonate unit and 90 wt% hemipelagic mud unit that enter the Central American trench. Sub-solidus assemblage comprises clinopyroxene + garnet + K-feldspar + quartz/coesite + rutile + calcio-ankerite/ankeritess. Solidus temperature is at 900–950°C at 2.5 GPa and at 900–1,000°C at 3.0 GPa, and the near-solidus melt is K-rich granitic. Crystalline carbonates persist only 50–100°C above the solidus and at temperatures above carbonate breakdown, carbon exists in the form of dissolved CO2 in silica-rich melts and as a vapor phase. The rhyodacitic to dacitic partial melt evolves from a K-rich composition at near-solidus condition to K-poor, and Na- and Ca-rich composition with increasing temperature. The low breakdown temperatures of crystalline carbonate in our study compared to those of recent studies on carbonated basaltic eclogite and peridotite owes to Fe-enrichment of carbonates in pelitic lithologies. However, the conditions of carbonate release in our study still remain higher than the modern depth-temperature trajectories of slab-mantle interface at sub-arc depths, suggesting that the release of sedimentary carbonates is unlikely in modern subduction zones. One possible scenario of carbonate release in modern subduction zones is the detachment and advection of sedimentary piles to hotter mantle wedge and consequent dissolution of carbonate in rhyodacitic partial melt. In the Paleo-NeoProterozoic Earth, on the other hand, the hotter slab-surface temperatures at subduction zones likely caused efficient liberation of carbon from subducting sedimentary carbonates. Deeply subducted carbonated sediments, similar to HPLC1, upon encountering a hotter mantle geotherm in the oceanic province can release carbon-bearing melts with high K2O, K2O/TiO2, and high silica, and can contribute to EM2-type ocean island basalts. Generation of EM2-type mantle end-member may also occur through metasomatism of mantle wedge by carbonated metapelite plume-derived partial melts.

Keywords

Subduction zones Sediment melting CO2 cycle Carbonated metapelite Sediment diapirs Sub-arc metasomatism EM2 ocean island basalts 

Notes

Acknowledgments

We gratefully acknowledge critical, formal reviews by two anonymous reviewers. We thank Maik Pertermann for his help during the set-up stage of the Rice piston cylinder lab. Cin-Ty Lee is acknowledged for supplying the natural kyanite and Anne Peslier for help with the electron microprobe analyses. The work received support from Rice University start-up grant and NSF MARGINS grant OCE-0841035 to RD.

References

  1. Auzanneau E, Vielzeuf D, Schmidt M (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol 152(2):125–148CrossRefGoogle Scholar
  2. Bau M, Knittel U (1993) Significance of slab-derived partial melts and aqueous fluids for the genesis of tholeiitic and calc-alkaline island-arc basalts: evidence from Mt Arayat Philippines. Chem Geol 105(4):233–251CrossRefGoogle Scholar
  3. Bose K, Ganguly J (1995) Quartz-coesite transition revisited: reversed experimental determination at 500–1,200°C and retrieved thermochemical properties. Am Mineral 80(3–4):231–238Google Scholar
  4. Brown M (2006) Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34(11):961–964CrossRefGoogle Scholar
  5. Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature. Am Mineral 91(2–3):435–440CrossRefGoogle Scholar
  6. Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236(1–2):524–541CrossRefGoogle Scholar
  7. Currie CA, Beaumont C, Huismans RS (2007) The fate of subducted sediments: a case for backarc intrusion and underplating. Geology 35(12):1111–1114CrossRefGoogle Scholar
  8. Dasgupta R, Hirschmann MM (2006) Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440(7084):659–662CrossRefGoogle Scholar
  9. Dasgupta R, Hirschmann MM (2010) The deep carbon cycle and melting in Earth’s interior. Earth Planet Sci Lett. doi: 10.1016/j.epsl.2010.06.039
  10. Dasgupta R, Hirschmann MM, Withers AC (2004) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227(1–2):73–85CrossRefGoogle Scholar
  11. Dasgupta R, Hirschmann MM, Dellas N (2005) The effect of bulk composition on the solidus of carbonated eclogite from partial melting experiments at 3 GPa. Contrib Mineral Petrol 149(3):288–305CrossRefGoogle Scholar
  12. Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47(4): 647–671Google Scholar
  13. Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island Basalts. J Petrol 48(11):2093–2124CrossRefGoogle Scholar
  14. de Leeuw GAM, Hilton DR, Fischer TP, Walker JA (2007) The He-CO2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: New constraints on volatile mass balance of the Central American Volcanic Arc. Earth Planet Sci Lett 258(1–2):132–146Google Scholar
  15. Eiler JM, Carr MJ, Reagan M, Stolper E (2005) Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst 6:Q07007. doi: 10.1029/2004GC000804
  16. Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102:14991–15019CrossRefGoogle Scholar
  17. Falloon TJ, Green DH (1989) The solidus of carbonated, fertile peridotite. Earth Planet Sci Lett 94(3–4):364–370CrossRefGoogle Scholar
  18. Ferri F, Poli S, Vielzeuf D (2009) An experimental determination of the effect of bulk composition on phase relationships in metasediments at near-solidus conditions. J Petrol 50(5):909–931CrossRefGoogle Scholar
  19. Fogel RA, Rutherford MJ (1990) The solubility of carbon dioxide in rhyolitic melts: a quantitative FTIR study. Am Mineral 75:1311–1326Google Scholar
  20. Franzolin E, Schmidt M, Poli S (2010) Ternary Ca–Fe–Mg carbonates: subsolidus phase relations at 3.5 GPa and a thermodynamic solid solution model including order/disorder. Contrib Mineral Petrol. doi:  10.1007/s00410-010-0527-x
  21. Gerya TV, Yuen DA (2003) Rayleigh-Taylor instabilities from hydration and melting propel ‘cold plumes’ at subduction zones. Earth Planet Sci Lett 212(1–2):47–62CrossRefGoogle Scholar
  22. Gill JB (1981) Orogenic andesite and plate techtonics. Springer, New York, p 390Google Scholar
  23. Gorman PJ, Kerrick DM, Connolly JAD (2006) Modeling open system metamorphic decarbonation of subducting slabs. Geochem Geophys Geosyst 7:Q04007. doi: 10.1029/2005GC001125 CrossRefGoogle Scholar
  24. Green DH, Lambert IB (1965) Experimental crystallization of anhydrous granite at high pressures and temperatures. J Geophys Res 70:5259–5268CrossRefGoogle Scholar
  25. Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1993) Mantle and slab contributions in Arc Magmas. Annu Rev Earth Planet Sci 21:175–204CrossRefGoogle Scholar
  26. Hawkesworth C, Turner S, Peate D, McDermott F, van Calsteren P (1997a) Elemental U and Th variations in island arc rocks: implications for U-series isotopes. Chem Geol 139(1–4):207–221CrossRefGoogle Scholar
  27. Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997b) U-Th Isotopes in Arc Magmas: implications for element transfer from the subducted crust. Science 276(5312):551–555CrossRefGoogle Scholar
  28. Hermann J (2002) Experimental constraints on phase relations in subducted continental crust. Contrib Mineral Petrol 143(2):219–235CrossRefGoogle Scholar
  29. Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49(4):717–740CrossRefGoogle Scholar
  30. Higgins JA, Fischer WW, Schrag DP (2009) Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth Planet Sci Lett 284(1–2):25–33CrossRefGoogle Scholar
  31. Holloway JR, Blank JG (1994) Application of experimental results to C-O-H species in natural melts. In: Carrol, Holloway JR (eds) Review in mineralogy, vol 30. Mineralogical Society of America, Washington, pp 187–225Google Scholar
  32. Hoogewerff JA, Van Bergen MJ, Vroon PZ, Hertogen J, Wordel R, Sneyers A, Nasution A, Varekamp JC, Moens HLE, Mouchel D (1997) U-series, Sr—Nd—Pb isotope and trace-element systematics across an active island arc-continent collision zone: Implications for element transfer at the slab-wedge interface. Geochim Cosmochim Acta 61(5):1057–1072CrossRefGoogle Scholar
  33. Irving AJ, Wyllie PJ (1975) Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 36 kb. Geochim Cosmochim Acta 39(1):35–53CrossRefGoogle Scholar
  34. Ishikawa T, Tera F (1999) Two isotopically distinct fluid components involved in the Mariana arc: Evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematics. Geology 27(1):83–86CrossRefGoogle Scholar
  35. Jackson MG, Dasgupta R (2008) Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett 276(1–2):175–186CrossRefGoogle Scholar
  36. Jackson MG, Hart SR, Koppers AAP, Staudigel H, Konter J, Blusztajn J, Kurz M, Russell JA (2007) The return of subducted continental crust in Samoan lavas. Nature 448(7154):684–687CrossRefGoogle Scholar
  37. Johnson MC, Plank T (1999) Dehydration and melting experiments constrain the fate of subducted sediments. Geochem Geophys Geosyst 1:1007. doi:  10.1029/1999GC000014
  38. Kerrick DM, Connolly JAD (2001a) Metamorphic devolatilization of subducted marine sediments and the transport of volatiles into the Earth’s mantle. Nature 411(6835):293–296CrossRefGoogle Scholar
  39. Kerrick DM, Connolly JAD (2001b) Metamorphic devolatilization of subducted oceanic metabasalts: implications for seismicity, arc magmatism and volatile recycling. Earth Planet Sci Lett 189(1–2):19–29CrossRefGoogle Scholar
  40. Komiya T, Hayashi M, Maruyama S, Yurimoto H (2002) Intermediate-P/T type Archean metamorphism of the Isua supracrustal belt: Implications for secular change of geothermal gradients at subduction zones and for Archean plate tectonics. Am J Sci 302(9):806–826CrossRefGoogle Scholar
  41. Koziol AM, Newton RC (1988) Redetermination of the anorthite breakdown reaction and improvement of the plagioclase-garnet-Al2SiO5-quartz barometer. Am Mineral 73:216–223Google Scholar
  42. Kretz R (1983) Symbols for rock-forming minerals. Am Mineral 68:277–279Google Scholar
  43. McDade P, Wood BJ, Van Westrenen W, Brooker R, Gudmundsson G, Soulard H, Najorka J, Blundy J (2002) Pressure corrections for a selection of piston-cylinder cell assemblies. Mineral Mag 66(6):1021–1028CrossRefGoogle Scholar
  44. Miller DM, Goldstein SL, Langmuir CH (1994) Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368(6471):514–520CrossRefGoogle Scholar
  45. Molina JF, Poli S (2000) Carbonate stability and fluid composition in subducted oceanic crust: an experimental study on H2O-CO2-bearing basalts. Earth Planet Sci Lett 176(3–4):295–310CrossRefGoogle Scholar
  46. Morgan GB VI, London D (2005) Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. Am Mineral 90(7):1131–1138CrossRefGoogle Scholar
  47. Morris JD, Leeman WP, Tera F (1990) The subducted component in island arc lavas: constraints from Be isotopes and B–Be systematics. Nature 344:31–36CrossRefGoogle Scholar
  48. Moyen J-Fo, Stevens G, Kisters A (2006) Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature 442(7102):559–562CrossRefGoogle Scholar
  49. Nakajima T, Maruyama S, Uchiumi S, Liou JG, Wang X, Xiao X, Graham SA (1990) Evidence for late Proterozoic subduction from 700-Myr-old blueschists in China. Nature 346(6281):263–265CrossRefGoogle Scholar
  50. Nichols GT, Wyllie PJ, Stern CR (1994) Subduction zone melting of pelagic sediments constrained by melting experiments. Nature 371(6500):785–788CrossRefGoogle Scholar
  51. Nichols GT, Wyllie PJ, Stern CR (1996) Experimental melting of pelagic sediment: constraints relevant to subduction. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction: top to bottom. Geophysical monograph. American Geophysical Union, Washington, pp 293–298Google Scholar
  52. Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229(1–3):78–95CrossRefGoogle Scholar
  53. Patino LC, Carr MJ, Feigenson MD (2000) Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138(3):265–283CrossRefGoogle Scholar
  54. Peacock SM, Keken PEv, Holloway SD, Hacker BR, Abers GA, Fergason RL (2005) Thermal structure of the Costa Rica—Nicaragua subduction zone. Phys Earth Planet Inter 149(1–2):187–200CrossRefGoogle Scholar
  55. Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Orogenic and andesite and related rocks. Willey Chichester, New York, pp 525–548Google Scholar
  56. Pickering JM, Schwab BE, Johnson AD (1998) Off-center hot spots: double thermocouple determination of the thermal gradient in a 1.27 cm (1/2 in.) CaF2 piston-cylinder furnace assembly. Am Mineral 83:228–235Google Scholar
  57. Plank T, Langmuir CH (1993) Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362(6422):739–743CrossRefGoogle Scholar
  58. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 145(3–4):325–394CrossRefGoogle Scholar
  59. Poli S, Schmidt MW (2002) Petrology of subducting slabs. Annu Rev Earth Planet Sci 30(1):207–235CrossRefGoogle Scholar
  60. Poli S, Franzolin E, Fumagalli P, Crottini A (2009) The transport of carbon and hydrogen in subducted oceanic crust: an experimental study to 5 GPa. Earth Planet Sci Lett 278(3–4):350–360CrossRefGoogle Scholar
  61. Ryan JG, Morris J, Tera F, Leeman WP, Tsvetkov A (1995) Cross-arc geochemical variations in the kurile arc as a function of slab depth. Science 270(5236):625–627CrossRefGoogle Scholar
  62. Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163(1–4):361–379CrossRefGoogle Scholar
  63. Schmidt MW, Vielzeuf D, Auzanneau E (2004) Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett 228(1–2):65–84CrossRefGoogle Scholar
  64. Shaw AM, Hilton DR, Fischer TP, Walker JA, Alvarado GE (2003) Contrasting He-C relationships in Nicaragua and Costa Rica: insights into C cycling through subduction zones. Earth Planet Sci Lett 214(3–4):499–513CrossRefGoogle Scholar
  65. Sizova E, Gerya T, Brown M, Perchuk LL (2010) Subduction styles in the precambrian: insight from numerical experiments. Lithos 116(3–4):209–229Google Scholar
  66. Spandler C, Yaxley G, Green D, Scott D (2010) Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas. Contrib Mineral Petrol. doi:  10.1007/s00410-007-0236-2
  67. Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7:Q05017. doi: 10.1029/2005GC001045
  68. Tatsumi Y, Hanyu T (2003) Geochemical modeling of dehydration and partial melting of subducting lithosphere: Toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem Geophys Geosyst 4:1081. doi: 10.1029/2003GC000530
  69. Tera F, Brown L, Morris J, Sacks IS, Klein J, Middleton R (1986) Sediment incorporation in island-arc magmas: inferences from 10Be. Geochim Cosmochim Acta 50(4):535–550CrossRefGoogle Scholar
  70. Thomsen TB, Schmidt MW (2008) Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium-carbon metasomatism of the mantle. Earth Planet Sci Lett 267(1–2):17–31CrossRefGoogle Scholar
  71. Turner S, Hawkesworth C (1997) Constraints on flux rates and mantle dynamics beneath island arcs from Tonga-Kermadec lava geochemistry. Nature 389(6651):568–573CrossRefGoogle Scholar
  72. Turner S, Hawkesworth C, Rogers N, Bartlett J, Worthington T, Hergt J, Pearce J, Smith I (1997) 238U–230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochim Cosmochim Acta 61(22):4855–4884CrossRefGoogle Scholar
  73. van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3:1056. doi: 10.1029/2001GC000256
  74. Wallace ME, Green DH (1988) An experimental determination of primary carbonatite magma composition. Nature 335(6188):343–346CrossRefGoogle Scholar
  75. Walter MJ, Sisson TW, Presnall DC (1995) A mass proportion method for calculating melting reactions and application to melting of model upper mantle lherzolite. Earth Planet Sci Lett 135(1–4):77–90CrossRefGoogle Scholar
  76. Williams DW, Kennedy GC (1969) Melting curve of diopside to 50 Kilobars. J Geophys Res 74:4359–4366CrossRefGoogle Scholar
  77. Xirouchakis D, Hirschmann MM, Simpson JA (2001) The effect of titanium on the silica content and on mineral-liquid partitioning of mantle-equilibrated melts. Earth Planet Sci Lett 65(14):2201–2217Google Scholar
  78. Yaxley G, Brey G (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Contrib Mineral Petrol 146(5):606–619CrossRefGoogle Scholar
  79. Yaxley GM, Green DH (1994) Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet Sci Lett 128(3–4):313–325CrossRefGoogle Scholar
  80. Yaxley GM, Green DH (1996) Experimental reconstruction of sodic dolomitic carbonatite melts from metasomatised lithosphere. Contrib Mineral Petrol 124(3):359–369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Earth ScienceRice UniversityHoustonUSA

Personalised recommendations