Contributions to Mineralogy and Petrology

, Volume 161, Issue 3, pp 439–450 | Cite as

Ordering in double carbonates and implications for processes at subduction zones

  • T. HammoudaEmail author
  • D. Andrault
  • K. Koga
  • T. Katsura
  • A. M. Martin
Original Paper


We have studied cation ordering in dolomite in situ as a function of pressure, temperature, and experimental time using the multi-anvil apparatus and synchrotron radiation. Starting with ordered dolomite, we observe the onset of disordering taking place at 950°C, while complete disordering is achieved at 1,070 (±20)°C, for pressures ranging between 3.37 and 4.05 GPa. Pressure does not appear to have significant effect on the order/disorder transition over the investigated range. We find that dolomite can reach its equilibrium ordering state above 900°C within duration of laboratory experiment (few hours), both from disordered state and from ordered state. In addition, we have reversed the dolomite breakdown reaction [magnesite + aragonite = dolomite] between 4.5 and 5.5 GPa, by monitoring diffraction peak intensity. We also have determined that dolomite is stable up to 7.4 GPa at 1,100°C. We confirm some earlier studies where a change in slope (dP/dT) has been observed, but we find a non-zero slope in the low pressure range. Combining the values of entropy obtained from dolomite degree of ordering with enthalpy values deduced from our bracketing of [magnesite + aragonite = dolomite] equilibrium, we model the location of dolomite breakdown in the P–T space as a function of cation ordering. By comparing previous conflicting studies, we show that, although kinetics of order/disorder is fast, disequilibrium dolomite breakdown is possible. Our modeling shows that subducted disordered dolomite present in carbonated sediments could be decomposed to [magnesite + aragonite] at lower pressure (3.5 GPa) than usually considered (>5 GPa). This 2-GPa (60 km) difference is valid on a fast subduction path and is possible if disorder inherited from sedimentation is preserved. On a slow subduction path, however, dolomite breakdown is encountered at about 250 km depth, which is 100 km deeper than currently considered.


Carbonate Dolomite Aragonite Magnesite Synchrotron Order/disorder Kinetics Subduction zone 



The dolomite used in this investigation was kindly provided by C. Renac (Université Jean Monnet, Saint-Etienne). We thank J.-L. Devidal for X-ray characterization of starting materials at Laboratoire Magmas et Volcans and K.-I. Funakoshi and Y. Tange for their help during the experiments at SPring8. We thank RW Luth and an anonymous reviewer for their helpful comments. We thank JASRI for supporting the experimental work (Spring8 Proposal number 2007A1570). Part of traveling expenses was covered by the Japan-France Integrated Action Program (Sakura), project 12295XL (2006-2007). Preliminary experiments used the multianvil press of Laboratoire Magmas et Volcans, which is financially supported by the Centre National de la Recherche Scientifique (Instrument National de l’INSU).


  1. Antao SM, Mulder WH, Hassan I, Chrichton WA, Parise JB (2004) Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite + magnesite↔ dolomite reaction boundary. Am Mineral 89:1142–1147Google Scholar
  2. Beran A, Zemann J (1977) Refinement and comparison of the crystal structures of a dolomite and of an Fe-rich ankerite. Tschermaks Min Petr Mitt 24:279–286CrossRefGoogle Scholar
  3. Bragg WL, Williams EJ (1934) The effect of thermal agitation on atomic arrangement in alloys. Proc R Soc Lond 145A:699–730Google Scholar
  4. Buob A, Luth RW, Schmidt MW, Ulmer P (2006) Experiments on CaCO3-MgCO3 solid solutions at high pressure and temperature. Am Mineral 91:435–440CrossRefGoogle Scholar
  5. Capobianco C, Burton BP, Davidson PM, Navrotsky A (1987) Structural and calorimetric studies of order-disorder CdMg(CO3)2. J Solid State Chem 71:214–223CrossRefGoogle Scholar
  6. Chatterjee ND, Krüger R, Haller G, Olbricht W (1998) The Bayesian approach to an internally consistent thermodynamic database: theory, database, and generation of phase diagrams. Contrib Mineral Petrol 133:149–168CrossRefGoogle Scholar
  7. Davis NE, Kronenberg AK, Newman J (2008) Plasticity and diffusion creep of dolomite. Tectonophysics 456:127–146CrossRefGoogle Scholar
  8. Dove MT, Powell BM (1989) Neutron diffraction study of the tricritical orientational order/disorder phase transition in calcite at 1260 K. Phys Chem Minerals 16:503–507CrossRefGoogle Scholar
  9. Ganguly J (1982) Mg-Fe order-disorder in ferromagnesian silicates, II: thermodynamics, kinetics and geological applications. In: Saxena SK (ed) Advances in physical geochemistry, vol 2. Springer, Berlin, pp 58–99Google Scholar
  10. Hammouda T (2003) High pressure melting of carbonated eclogite and experimental constraints on carbon recycling and storage in the mantle. Earth Planet Sci 214:357–368CrossRefGoogle Scholar
  11. Huang W-L, Liu T-C, Shen P, Hsu A (2009) Ca-Mg inter-diffusion in synthetic polycrystalline dolomite-calcite aggregate at elevated temperatures and pressure. Mineral Petrol 95:327–340CrossRefGoogle Scholar
  12. Jamieson JC, Fritz JN, Manghnani MH (1982) Pressure measurement at high temperature in X-ray diffraction studies: gold as a primary standard. In: Akimoto S, Manghnani MH (eds) High pressure research in geophysics. Center for Academic Publications, Tokyo, pp 27–47Google Scholar
  13. Katsura T, Funakoshi K-i, Kubo A, Nishiyama N, Tange Y, Sueda Y-u, Kubo T, Utsumi W (2004) A large-volume high-pressure and high-temperature apparatus for in situ X-ray observation, ‘SPEED-Mk.II’. Phys Earth Planet Int 143–144:497–506CrossRefGoogle Scholar
  14. Landau LD, Lifchitz EM (1967) Physique statistique, Editions MIR, Moscou 1967, French translation, p 583Google Scholar
  15. Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS), Los Alamos National Laboratory Report LAUR 86-748Google Scholar
  16. Luth RW (2001) Experimental determination of the reaction aragonite + magnesite = dolomite at 5 to 9 GPa. Contrib Mineral Petrol 141:222–232CrossRefGoogle Scholar
  17. Malone MJ, Baker PA, Burns SJ (1996) Recrystallization of dolomite: an experimental study from 50–200°C. Geochim Cosmochim Acta 60:2189–2207CrossRefGoogle Scholar
  18. Martinez I, Zhang J, Reeder RJ (1996) In situ X-ray diffraction of aragonite and dolomite at high pressure and high temperature: evidence for dolomite breakdown to aragonite and magnesite. Am Mineral 81:611–624Google Scholar
  19. Morlidge M, Pawley A, Droop G (2006) Double carbonate breakdown reactions at high pressure: an experimental study in the system CaO-MgO-FeO-MnO-CO2. Contrib Mineral Petrol 152:365–373CrossRefGoogle Scholar
  20. Navrotsky A, Capobianco C (1987) Enthalpies of formation of dolomite and magnesian calcite. Am Mineral 72:782–787Google Scholar
  21. Navrotsky A, Dooley D, Reeder R, Brady P (1999) Calorimetric studies of the energies of order-disorder in the system Fe1−xMgxCa(CO3)2. Am Mineral 84:1622–1626Google Scholar
  22. Putnis A (1992) Introduction to mineral sciences. Cambridge University Press, Cambridge, p 457Google Scholar
  23. Redfern SAT, Salje E, Navrotsky A (1989) High-temperature enthalpy at the orientational order-disorder transition in calcite: implications for the calcite/aragonite phase equilibrium. Contrib Mineral Petrol 101:479–484CrossRefGoogle Scholar
  24. Reeder RJ (1983) Crystal chemistry of the rhombohedral carbonates. In: RJ Reeder (ed) Carbonates: mineralogy and chemistry, reviews in mineralogy. vol 11. Mineralogical Society of America, Washington, DC, pp 1–47Google Scholar
  25. Reeder RJ, Markgraf SA (1986) High-temperature crystal chemistry od dolomite. Am Mineral 71:795–804Google Scholar
  26. Reeder RJ, Wenk H-R (1983) Structure refinements of some thermally disordered dolomites. Am Mineral 68:769–776Google Scholar
  27. Ross NL, Reeder JR (1992) High-pressure structural study of dolomite and ankerite. Am Mineral 77:412–421Google Scholar
  28. Sato K, Katsura T (2001) Experimental investigation on dolomite dissociation into aragonite + magnesite up to 8.5 GPa. Earth Planet Sci Lett 184:529–534CrossRefGoogle Scholar
  29. Schultz-Güttler R (1986) The influence of disordered, non-equilibrium dolomites on the Mg-solubility in calcite in the system CaCO3-MgCO3. Contrib Mineral Petrol 93:395–398CrossRefGoogle Scholar
  30. Shirasaka M, Takahashi E, Nishihara Y, Matsukage K, Kikegawa T (2002) In situ X-ray observation of the reaction dolomite = aragonite + magnesite at 900–1300 K. Am Mineral 87:922–930Google Scholar
  31. Skogby H (1992) Order-disorder kinetics in orthopyroxenes of ophiolite origin. Contrib Mineral Petrol 109:471–478CrossRefGoogle Scholar
  32. van Keken PE, Kiefer B, Peacock SM (2002) High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geophys Geochem Geosys 3(10):1056. doi: 10.1029/2001GC000256 CrossRefGoogle Scholar
  33. Veizer J (1983) Trace elements and isotopes in sedimentary carbonates. In: RJ Reeder (ed) Carbonates: mineralogy and chemistry, reviews in mineralogy. vol 11. Mineralogical Society of America, Washington, DC, pp 265–300Google Scholar
  34. Zhang L, Ellis DJ, Williams S, Jiang W (2002) Ultra-high pressure metamorphism in western Tianshan, China: Part II. Evidence from magnesite in eclogite. Am Miner 87:861–866Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • T. Hammouda
    • 1
    • 2
    • 3
    Email author
  • D. Andrault
    • 1
    • 2
    • 3
  • K. Koga
    • 1
    • 2
    • 3
  • T. Katsura
    • 4
    • 5
  • A. M. Martin
    • 1
    • 2
    • 3
    • 6
  1. 1.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.CNRS, UMR 6524, LMVClermont-FerrandFrance
  3. 3.IRD, R 163, LMVClermont-FerrandFrance
  4. 4.Institute for the Study of the Earth InteriorOkayama UniversityMisasaJapan
  5. 5.Bayerisches GeoinstitutUniversität BayreuthBayreuthDeutschland
  6. 6.NASA Johnson Space CenterHoustonUSA

Personalised recommendations