Skip to main content

Advertisement

Log in

The geochemistry of a dying continental arc: the Incapillo Caldera and Dome Complex of the southernmost Central Andean Volcanic Zone (~28°S)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Pleistocene Incapillo Caldera and Dome Complex (5,570 m) marks the southernmost siliceous center of the Andean Central Volcanic Zone (~28°S), where the steeply dipping (~30°) segment of the subducting Nazca plate transitions into the Chilean “flatslab” to the south. The eruption of the Incapillo Caldera and Dome Complex began with a 3–1 Ma effusive phase characterized by ~40 rhyodacitic dome eruptions. This effusive phase was terminated by an explosive “caldera-forming” event at 0.51 Ma that produced the 14 km3 Incapillo ignimbrite. Distinctive and virtually identical chemical signatures of the domes and ignimbrites (SiO2 = 67–72 wt%; La/Yb = 37–56; Ba/La = 16–28; La/Ta = 30–50; 87Sr/86Sr = 0.70638–0.70669; ε Nd = −4.2 to −4.6) indicate that all erupted lavas originated from the same magma chamber and that differentiation effects between units were minor. The strong HREE depletion (Sm/Yb = 6–8) that distinguishes Incapillo magmas from most of the large ignimbrites of the Altiplano–Puna plateau can be explained by the extent and degree of partial melting at lower crustal depths (>40 km) in the presence of garnet. At upper crustal depths, this high-pressure residual geochemical signature, also common to adjacent late Miocene/Pliocene Pircas Negras andesites, was partially overprinted by shallow-level assimilation and fractional crystallization processes. Energy-constrained AFC modeling suggests that incorporation of anatectic upper crustal melts into a fractionated “adakite-like” dacitic host best explains the petrogenesis of Incapillo magmas. The diminution of the sub-arc asthenospheric wedge during Nazca plate shallowing left the Incapillo magma chamber unreplenished by both mafic mantle-derived and lower crustal melts and thus stranded at shallow depths within the Andean crust. Based on its small size and distinctive high-pressure chemical signature, the Incapillo Caldera and Dome Complex provides an endmember model for an Andean caldera erupting within a waning magmatic arc over a shallowing subduction zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aitcheson SJ (1995) Pb isotopes define basement domains of the Altiplano, central Andes. Geology 23(6):555–558

    Article  Google Scholar 

  • Aitcheson SJ, Forrest AH (1994) Quantification of crustal contamination in open magmatic systems. J Petrol 35(2):461–488

    Google Scholar 

  • Aitcheson SJ, Harmon RS, Moorbath S, Schneider A, Soler P, Soria-Escalante E, Steele G, Swainbank I, Wörner G (1995) Pb isotopes define basement domains of the Altiplano, central Andes. Geology 23(6):555–558

    Article  Google Scholar 

  • ANCORP Working Group (2003) Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96)). J Geophys Res 108(B7):2328. doi:10.1029/2002JB001771

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Mineral 83:1127–1131

    Google Scholar 

  • Astini RA, Cawood PA (2009) A Proterozoic basement under the northern Cordillera Frontal: a hint to Chilenia and the continuation of the accretionary prism east of the Precordillera. In: 12° Congreso Geólogico Chileno, Actas, Santiago, Chile

  • Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146

    Article  Google Scholar 

  • Barazangi M, Isacks BL (1976) Spatial distribution of earthquakes and subduction of the Nazca Plate beneath South America. Geology 4(11):686–692

    Article  Google Scholar 

  • Bea F (1996) Residence of the REE, Y, Th, and U in granites and crustal protoliths: implications for the chemistry of crustal melts. J Petrol 37(3):521–552

    Article  Google Scholar 

  • Becchio R, Lucassen F, Kasemann S, Franz G, Viramonte JG (1999) Geoquímica y sistemática isotópica de rocas metamórficas del Paleozoico inferior: Noroeste de Argentina y Norte de Chile (21°–27°S). Acta Geol Hispan 34:273–299

    Google Scholar 

  • Beck SL, Zandt G (2002) The nature of orogenic crust in the Central Andes. J Geophys Res 107(B10). doi:10.1029/2000jb000124(B10)

  • Bohrson WA, Spera FJ (2001) Energy-constrained open-system magmatic processes. II. Application of energy-constrained assimilation-fractional crystallization (EC-AFC) model to magmatic systems. J Petrol 42(5):1019–1041

    Article  Google Scholar 

  • Caffe PJ, Trumbull R, Coira B, Romer RL (2002) Petrogenesis of early Neogene magmatism in the northern Puna: implications for magma genesis and crustal processes in the Central Andean Plateau. J Petrol 43(5):907–942

    Article  Google Scholar 

  • Caffe PJ, Soler MM, Coira B, Cabrera A, Flores PI (2007) Estratigrafía y centros eruptivos de la región de Pairique, Puna Jujeña. Rev Asoc Geol Argent 62(2):242–256

    Google Scholar 

  • Cahill TA, Isacks BL (1992) Seismicity and shape of the subducted Nazca Plate. J Geophys Res 97(B12):17, 503–517, 529

    Google Scholar 

  • Coira B, Davidson J, Mpodozis C, Ramos V (1982) Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. In: Linares E, Cordani UG, Munizaga F (eds) Magmatic evolution of the Andes, vol 18. Elsevier, Amsterdam, pp 303–332

    Google Scholar 

  • Coira B, Kay SM, Viramonte JG (1993) Upper Cenozoic magmatic evolution of the Argentine Puna—a model for changing subduction geometry. Int Geol Rev 35:677–720

    Article  Google Scholar 

  • Coira B, Caffe PJ, Kay SM, Diaz A, Ramirez A (1996) Complejo volcanico Vilama-sistema caldérico del Cenozoico superior en Puna, Jujuy. In: 13°Congreso Geológico Argentino, vol 13. Buenos Aires, Argentina, pp 603–620

  • Coira B, Kay SM, Peréz B, Woll B, Hanning M, Flores P (1999) Magmatic sources and tectonic setting of Gondwana margin Ordovician magmas, northern Puna of Argentina and Chile. In: Ramos VA, Keppie D (eds) Laurentia-Gondwana connections before Pangea: Geological Society of America Special Paper 336, pp 147–169

  • Comte D, Haessler H, Dorbath L, Pardo M, Monfret T, Lavenu A, Pontoise B, Hello Y (2002) Seismicity and stress distribution in the Copiapo, northern Chile subduction zone using combined on- and off-shore seismic observations. Phys Earth Planet Interiors 132:197–217

    Article  Google Scholar 

  • de Silva SL (1989a) Altiplano–Puna volcanic complex of the Central Andes. Geology 17(12):1102–1106

    Article  Google Scholar 

  • de Silva SL (1989b) Geochronology and stratigraphy of the ignimbrites from the 21°30′S to 23°30′S portion of the central Andes of northern Chile. J Volcanol Geotherm Res 37(2):93–131

    Article  Google Scholar 

  • de Silva SL, Francis PW (1991) Volcanoes of the Central Andes. Springer, Berlin, p 216

    Google Scholar 

  • de Silva SL, Gosnold WD (2007) Episodic construction of batholiths: insights from the spatiotemporal development of an ignimbrite flare-up. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2007.07.015

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347(6294):662–665

    Article  Google Scholar 

  • DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101(2):425–478

    Article  Google Scholar 

  • DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53(2):189–202

    Article  Google Scholar 

  • Drummond MS, Defant MJ (1990) A model for trondhjemite–tonalite–dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95(B13):21, 503–521

    Google Scholar 

  • Dufek J, Bergantz GW (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. J Petrol 46(11):2167–2195

    Article  Google Scholar 

  • Fiebig J, Wiechert U, Rumble D III, Hoefs J (1999) High-precision in situ oxygen isotope analysis of quartz using an ArF laser. Geochim Cosmochim Acta 63(5):687–702

    Article  Google Scholar 

  • Folkes C, Wright HM, Cas RAF, de Silva S, Lesti C, Viramonte GJ (2009) A re-appraisal of the stratigraphy and deposit volumes in the Cerro Galán volcanic system, NW Argentina. Bull Volcanol (in press)

  • Francis PW, Baker MCW (1978) Sources of two large ignimbrites in the central Andes: some Landsat evidence. J Volcanol Geotherm Res 4(1–2):81–87

    Article  Google Scholar 

  • Francis PW, Sparks RSJ, Hawkesworth CJ, Thorpe RS, Pyle DM, Tait SR, Mantovani MSM, McDermott F (1989) Petrology and geochemistry of volcanic rocks of the Cerro Galán Caldera, Northwest Argentina. Geol Mag 126(5):515–547

    Article  Google Scholar 

  • Fromm R, Zandt G, Beck SL (2004) Crustal thickness beneath the Andes and Sierras Pampeanas at 30°S inferred from Pn apparent phase velocities. Geophys Res Lett 31(6). doi:10.1029/2003GL019231(6)

  • Gardeweg M, Ramírez CF (1987) La Pacana caldera and the Atana ignimbrite—a major ash-flow and resurgent caldera complex in the Andes of northern Chile. Bull Volcanol 49:547–566

    Article  Google Scholar 

  • Gardeweg M, Clavero J, Mpodozis C, Pérez de Arce C, Villeneuve M (2000) El Macizo Tres Cruces: Un complejo volcánico longevo y potencialmente activo en la Alta Cordillera de Copiapó, Chile. In: 9° Congreso Geológico Chileno, Actas, Puerto Varas, Chile, pp 191–195

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV: a revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Goss AR (2008) Chemical signatures of magmas at times of frontal arc migration: examples from the Central Andes and southern Central America. In: Earth and atmospheric science. Ph.D. Cornell University, Ithaca, NY

  • Goss AR, Kay SM (2009) Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (~28°S, 68°W). Earth Planet Sci Lett 279(1-2):97–109

    Article  Google Scholar 

  • Goss AR, Kay SM, Mpodozis C, Singer B (2009) The Incapillo Caldera (~28°S): a stranded magma chamber over a dying Andean arc. J Volcanol Geotherm Res 184:389–404

    Article  Google Scholar 

  • Gromet LP, Silver LT (1983) Rare earth element distribution among minerals in a granodiorite and their petrogenetic implications. Geochim Cosmochim Acta 47:925–940

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Muentener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145(5):515–533

    Article  Google Scholar 

  • Guerrero MA, Lanadaio E, Marcos O (1993) Mapa geológico de la provincia de La Rioja, Republica Argentina. Secretaria de Minería, Dirección Nacional del Servicio Geológico

  • Huang W-L, Wyllie PJ (1986) Phase relationships of gabbro–tonalite–granite–water at 15 kb with applications to differentiation and anatexis. Am Mineral 71:301–316

    Google Scholar 

  • James DE, Sacks IS (1999) Cenozoic formation of the Central Andes: a geophysical perspective. In: Skinner B (ed) Geology and ore deposits of the Central Andes. Society of Economic Geology, Special Publication, vol 7, pp 1–25

  • Kamenov GD, Mueller P, Perfit MR (2004) Optimization of mixed Pb–Tl solutions for high precision isotopic analyses by MC-ICP-MS. J Anal Atom Spectrom 19:1262–1267

    Article  Google Scholar 

  • Kamenov GD, Perfit MR, Mueller PA, Jonasson IR (2008) Controls on magmatism in an island arc environment: study of lavas and sub-arc xenoliths from the Tabar–Lihir–Tanga–Feni island chain, Papua New Guinea. Contrib Mineral Petrol 155:635–656

    Article  Google Scholar 

  • Kay SM, Abbruzzi JM (1996) Magmatic evidence for Neogene lithospheric evolution of the central Andean “flat-slab” between 30°S and 32°S. Tectonophysics 259:15–28

    Article  Google Scholar 

  • Kay SM, Coira BL (2009) Shallowing and steepening subduction zones, continental lithospheric loss, magmatism and crustal flow under the Central Andean Altiplano–Puna plateau. In: Kay SM, Ramos VA, Dickinson WR (eds) Backbone of the Americas: shallow subduction, plateau uplift, and ridge and terrane collision, vol 204. Geological Society of America, Memoir, pp 261–292

    Google Scholar 

  • Kay SM, Mpodozis C (2000) Chemical signatures from magmas at the southern termination of the central Andean Volcanic Zone: the Incapillo/Bonete and surrounding regions. In: 9° Congreso Geológico Chileno, vol 1. Puerto Varas, Chile, pp 626–629

  • Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene shallowing of the Nazca Plate beneath the modern Chilean flat-slab. J S Am Earth Sci 15(1):39–57

    Google Scholar 

  • Kay SM, Maksaev V, Moscoso R, Mpodozis C, Nasi C (1987) Probing the evolving Andean lithosphere: mid–late tertiary magmatism in Chile (29°–30°30′) over the modern zone of subhorizontal subduction. J Geophys Res 92(B7):6173–6189

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for mid–late tertiary magmatic rocks associated with a shallowing subduction zone and a thickening crust in the Central Andes (28 to 33°S). In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting. Geological Society of America Special Paper 265, Boulder, CO, pp 113–137

  • Kay SM, Mpodozis C, Tittler A, Cornejo P (1994) Tertiary magmatic evolution of the Maricunga mineral belt in Chile. Int Geol Rev 36(12):1079–1112

    Article  Google Scholar 

  • Kay SM, Mpodozis C, Coira B (1999) Neogene magmatism, tectonism, and mineral deposits of the Central Andes (22° to 33°S latitude). In: Skinner BJ (ed) Geology and ore deposits of the Central Andes. Society of Economic Geology Special Publication 7, pp 27–59

  • Kay SM, Coira B, Caffe PJ (2008a) Geoquímica, fuentes y evolución del magmatismo neógeno de la Puna norte. In: Geología y Recursos Naturales de la Provincia de Jujuy. Relatorio del 17° Congreso Geológico Argentino. San Salvador de Jujuy, Argentina, pp 322–334

  • Kay SM, Coira B, Mpodozis C (2008b) Field trip guide: Neogene evolution of the central Andean Puna plateau and southern Central Volcanic Zone. In: Kay SM, Ramos VA (eds) Field trip guides to the backbone of the Americas in the southern and central Andes: ridge collision, shallow subduction, and plateau uplift. Geological Society of America Field Guide 13. doi:10.1130/2008.0013(05), pp 119–183

  • Kay SM, Coira B, Wörner G, Kay RW, Singer BS (2009) Geochemical, isotopic and single crystal 40Ar/39Ar age constraints on the evolution of the Cerro Galán ignimbrites. J Volcanol Geotherm Res (submitted)

  • Lai SC, Qin JF, Li YF (2007) Partial melting of thickened Tibetan crust: geochemical evidence from Cenozoic adakitic volcanic rocks. Int Geol Rev 49(4):357–373

    Article  Google Scholar 

  • Le Maitre RW, Bateman R, Dudek A, Keller J, Lameyre J, La Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zenettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the international union of geological sciences subcommission on the systematics of igneous rocks. Blackwell, Oxford

  • Lindsay JM, de Silva SL, Trumbull R, Emmermann R, Wemmer K, La Pacana caldera N (2001) Chile: a re-evaluation of the stratigraphy and volcanology of one of the world’s largest resurgent calderas. J Volcanol Geotherm Res 106:145–173

    Article  Google Scholar 

  • Llambías EJ, Quenardelle S, Montenegro T (2003) The Choiyoi Group from central Argentina: a subalkaline transitional to alkaline association in the craton adjacent to the active margin of the Gondwana continent. J S Am Earth Sci 16(4):243–257. doi:210.1016/S0895-9811(1003)00070-00071

    Article  Google Scholar 

  • Lucassen F, Franz G, Thirlwall MF, Mezger K (1999) Late Paleozoic granites of the Chilean Coast Range and Precordillera at ~22°S. J Petrol 40:1527–1551

    Article  Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Wilke HG, Romer RL, Dulski P (2001) Composition and density model of the continental crust at an active continental margin: the Central Andes between 21° and 27°S. Tectonophysics 341(1–4):195–223

    Article  Google Scholar 

  • Lucassen F, Escayola M, Romer RL, Viramonte J, Koch K, Franz G (2002) Isotopic composition of late Mesozoic basic and ultrabasic rocks from the Andes (23°–32°S): implications for the Andean mantle. Contrib Mineral Petrol 143(3):336–349

    Article  Google Scholar 

  • Macfarlane AW, Marcet P, LeHuray AP, Peterson U (1990) Lead isotope provinces of the central Andes inferred from ores and crustal rocks. Econ Geol 85:1857–1880

    Article  Google Scholar 

  • Martin H (1987) Petrogenesis of Archaean trondhjemites, tonalites and granodiorites from eastern Finland: major and trace element geochemistry. J Petrol 28(5):921–953

    Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Martina F, Viramonte GJ, Astini RA, Pimentel M, Dantas E (2009) Evidence of Early Carboniferous Pre-Choiyoi volcanism in western Gondwana: first isotopic, geochemical, and U-Ph SHRIMP data. In: XXI Colloquium on Latin American Earth Sciences. Göttingen, Germany

  • Masuda A, Nakamura N, Tanaka T (1973) Fine structures of mutually normalized rare-earth patterns of chondrites. Geochim Cosmochim Acta 37(2):239–248

    Article  Google Scholar 

  • McGlashan N, Brown LD, Kay SM (2008) Crustal thickness in the central Andes from teleseismically recorded pmP depth phase precursors. Geophys J Int 175:1013–1022

    Article  Google Scholar 

  • McKee E, Robinson AC, Rybuta JJ, Cuitiño L, Moscoso R (1994) Age and Sr-isotopic composition of volcanic rocks in the Maricunga Belt, Chile: implications for magma sources. J S Am Earth Sci 7:167–177

    Article  Google Scholar 

  • Miller CF, Mittlefehldt DW (1982) Light rare earth element depletion in felsic magmas. Geology 10(3):129–133

    Article  Google Scholar 

  • Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130(3–4):304–319

    Article  Google Scholar 

  • Moscoso R, Maksaev V, Cuituno L, Diaz F, Koeper R, Tosdal R, Cunningham C, McKee E, Rytuba J (1993) El Complejo Cerros Bravos, Region de Maricunga, Chile: Geología, Alteración Hidrotermal y Mineralización. In: Investigación de Metales Preciosos en los Andes Centrales: Projecto BID/PC 88-02-32-spi63-8

  • Mpodozis C, Kay SM (1992) Late Paleozoic to Triassic evolution of the Gondwana margin: evidence from Chilean Frontal Cordilleran batholiths (28°S to 31°S). Geol Soc Am Bull 104:999–1014

    Article  Google Scholar 

  • Mpodozis C, Kay S, Cornejo P, Tittler A (1995) La Franja de Maricunga: síntesis de la evolución del frente volcánico oligoceno-mioceno de la zona sur de los Andes Centrales. Rev Geol Chile 22(2):273–313

    Google Scholar 

  • Mpodozis C, Kay SM, Gardeweg MP, Coira B (1996) Geología de la region de Ojos del Salado (Andes centrales, 27°S): Implicancias de la migración hacia el este del frente volcánico Cenozoico superior. In: 13° Congreso Geológico Argentino, vol 13. Buenos Aires, Argentina, pp 539–548

  • Mpodozis C, Kay SM, Gardeweg M, Coira B (1997) Geología de la region de Valle-Ancho-Laguna Verde (Catamarca, Argentina): Una ventana al basamento del extremo sur de la zona volcánica de los Andes Centrales. In: 8° Congreso Geológico Chileno, Actas, Antofagasta, Chile, pp 1689–1693

  • Ort MH (1993) Eruptive processes and caldera formation in a nested downsag-collapse caldera: Cerro Panizos, Central Andes. J Volcanol Geotherm Res 56(3):221–252

    Article  Google Scholar 

  • Pardo M, Comte D, Monfret T (2002) Seismotectonic and stress distribution in the central Chile subduction zone. J S Am Earth Sci 15(1):11–22

    Article  Google Scholar 

  • Petford N, Atherton MP (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru. J Petrol 37(6):1491–1591

    Article  Google Scholar 

  • Petford N, Gallagher K (1991) Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma. Earth Planet Sci Lett 193(3–4):483–499

    Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of a metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 36(4):891–931

    Google Scholar 

  • Rubiolo D, Zappettini E, Lizuain A, Hickson C (2002) Regional aspects of the southern end of the central volcanic zone (between 27° and 28°S), Argentina. In: 5th international symposium on Andean geodynamics, Toulouse, France, pp 560–557

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Article  Google Scholar 

  • Schmitt AK, de Silva SL, Trumbull RB, Emmermann R (2001) Magma evolution in the Purico ignimbrite complex, northern Chile: evidence for zoning of a dacitic magma by injection of rhyolitic melts following mafic recharge. Contrib Mineral Petrol 140(6):680–700

    Article  Google Scholar 

  • Schnurr WBW, Trumbull R, Clavero J, Hahne K, Siebel W, Gardeweg M (2007) Twenty-five million years of silicic volcanism in the southern central volcanic zone of the Andes: geochemistry and magma genesis of ignimbrites from 25 to 27°S, 67 to 72°W. J Volcanol Geotherm Res 166:17–46

    Article  Google Scholar 

  • Seggiaro RE (1994) Petrología, geoquímica y mecanismos de erupción del complejo volcánico Coranzulí. Ph.D. thesis. Universidad Nacional de Salta, Salta, Argentina, p 230

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Mineral Petrol 117(4):394–409

    Article  Google Scholar 

  • Siebel W, Schnurr WBW, Hahne K, Kraemer B, Trumbull R, van der Bogaard P, Emmermann R (2001) Geochemistry and isotope systematics of small- to medium-volume Neogene–Quaternary ignimbrites in the southern central Andes: evidence for derivation from andesitic magma sources. Chem Geol 171:213–237

    Article  Google Scholar 

  • Soler MM, Caffe PJ, Coira BL, Onoe AT, Kay SM (2007) Geology of the Vilama caldera: a new interpretation of a large-scale explosive event in the Central Andean plateau during the Upper Miocene. J Volcanol Geotherm Res 164:27–53

    Article  Google Scholar 

  • Sparks RSJ, Francis PW, Hamer RD, Pankhurst RJ, O’Callaghan LO, Thorpe RS, Page R (1985) Ignimbrites of the Cerro Galán Caldera, NW Argentina. J Volcanol Geotherm Res 24(3–4):205–248

    Article  Google Scholar 

  • Spera FJ, Bohrson WA (2001) Energy-constrained open-system magmatic processes. I. General model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J Petrol 42(5):999–1018

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution: an examination of the geochemical record preserved in sedimentary rocks. Blackwell Scientific, Oxford, p 312

    Google Scholar 

  • Taylor HP, Sheppard SMP (1986) Igneous Rocks. I. Processes of isotopic fractionation and isotopic systematics. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes, vol 16. American Mineralogical Society, Washington, pp 227–271

    Google Scholar 

  • Tosdal R (1996) The Amazon–Laurentian connection as viewed from the Middle Proterozoic rocks in the central Andes, western Bolivia, and northern Chile. Tectonics 15:827–842

    Article  Google Scholar 

  • White WM, Duncan RA (1996) Geochemistry and geochronology of the Society Islands: new evidence for deep mantle recycling. In: Basu A, Hart S (eds) Earth processes: reading the isotopic code, vol 95. AGU Geophysical Monograph, pp 183–206

  • Woerner G, Moorbath S, Harmon RS (1992) Andean Cenozoic volcanic centers reflect basement isotopic domains. Geology 20(12):1103–1106

    Article  Google Scholar 

  • Yuan X, Sobolev SV, Kind R (2002) Moho topography in the Central Andes and its geodynamic implications. Earth Planet Sci Lett 199(3–4):389–402

    Article  Google Scholar 

Download references

Acknowledgments

We particularly thank Robert Kay for his discussion and his substantial contributions in collecting the INAA data and Daniel Rubiolo, Beatriz Coira, Gabriela Depine, and Andrés Folguera for their contributions in the field. Gerhard Wörner at the Universität Göttingen is graciously thanked for the oxygen isotopic data and George Kamenov at the University of Florida for the MC-ICPMS isotopic data. Finally, we recognize the high alpine 4x4 driving ability of Jorge Lemp and Antonio Diaz (SERNAGEOMIN) which greatly aided in sample collection and field mapping. This manuscript was improved by two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Goss.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 816 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goss, A.R., Kay, S.M. & Mpodozis, C. The geochemistry of a dying continental arc: the Incapillo Caldera and Dome Complex of the southernmost Central Andean Volcanic Zone (~28°S). Contrib Mineral Petrol 161, 101–128 (2011). https://doi.org/10.1007/s00410-010-0523-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0523-1

Keywords

Navigation