Contributions to Mineralogy and Petrology

, Volume 161, Issue 1, pp 13–33 | Cite as

Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros

  • Craig B. Grimes
  • Takayuki Ushikubo
  • Barbara E. John
  • John W. Valley
Original Paper

Abstract

Lower ocean crust is primarily gabbroic, although 1–2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater–rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform δ18O with an average value of 5.2 ± 0.5‰ (2SD). The average δ18O(Zrc) would be in magmatic equilibrium with unaltered MORB [δ18O(WR) ~ 5.6–5.7‰], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured δ18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like δ18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water–rock interactions that alter the protolith δ18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal environments. Many of the >3.9 Ga zircons have mildly elevated δ18O (6.0–7.5‰), but such values have not been identified in any zircons from the large sample suite examined here. The difference in δ18O, in combination with newly acquired lithium concentrations and published trace element data, clearly shows that the >3.9 Ga detrital zircons did not originate by processes analogous to those in modern mid-ocean ridge settings.

Keywords

Zircon Oxygen isotopes SIMS Plagiogranite Ocean crust Hadean 

Notes

Acknowledgments

The authors gratefully acknowledge Noriko Kita for assistance and discussions during sample preparation, instrument tuning of the CAMECA IMS-1280, and data acquisition. We also thank Jim Kern for assistance maintaining the ion microprobe, John Fournelle for assistance on the SEM, and Brian Hess for expertise in sample mount preparation. Helpful conversations with Aaron Cavosie, and reviews from Jade Star Lackey and Wolfgang Bach are greatly appreciated. This research used samples from the Ocean Drilling Program and Integrated Ocean Drilling Program. Initial preparation of samples was funded by NSF (OCE-0352054, OCE-0752558, OCE-0550456). The present study was funded by NSF-EAR (0509639, 0838058) and DOE (93ER14389). The WiscSIMS Lab is partially funded by NSF-EAR (0319230, 0516725, 0744079).

Supplementary material

410_2010_519_MOESM1_ESM.xls (96 kb)
Supplementary material 1 (XLS 95 kb)

References

  1. Alt JC, Bach W (2006) Oxygen isotope composition of a section of lower oceanic crust, ODP Hole 735B. Geochem Geophys Geosyst 7:G12008. doi:10.1029/2006GC001385 CrossRefGoogle Scholar
  2. Alt JC, Shanks WC, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotites and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8:Q08002. doi:10.1029/2007GC001617 CrossRefGoogle Scholar
  3. Bach W, Alt JC, Niu Y, Humphris SE, Erzinger J, Dick HJB (2001) The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: results from ODP Hole 735B (Leg 176). Geochim Cosmochim Acta 65:3267–3287CrossRefGoogle Scholar
  4. Baines AG, Cheadle MJ, John BE, Grimes CB, Schwartz JJ, Wooden JL (2009) SHRIMP Pb/U zircon ages constrain gabbroic crustal accretion at Atlantis Bank on the ultraslow-spreading Southwest Indian Ridge. Earth Planet Sci Lett 287:540–550. doi:10.1016/j.epsl.2009.09.002 CrossRefGoogle Scholar
  5. Bindeman IN, Valley JW (2002) Oxygen isotope study of the Long Valley magma system, California: isotope thermometry and convection in large silicic magma bodies. Contrib Mineral Petrol 144:185–205CrossRefGoogle Scholar
  6. Bindeman I, Gurenko A, Sigmarsson O, Chaussidon M (2008) Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. Geochim Cosmochim Acta 72:4397–4420. doi:10.1016/j.gca.2008.06.010 CrossRefGoogle Scholar
  7. Blackman DK, Karson JA, Kelley DS, Cann JR, Fruh-Green GL, Gee JS, Hurst SD, John BE, Morgan J, Nooner SL, Ross DK, Schroeder TJ, Williams EA (2004) Geology of the Atlantis Massif (Mid-Atlantic Ridge, 30°N): implications for the evolution of an ultramafic oceanic core complex. Mar Geophys Res 23:443–469. doi:10.1023/B:MARI.0000018232.14085.75 CrossRefGoogle Scholar
  8. Blackman DK, Ildefonse B, John BE, Ohara Y, Miller DJ, MacLeod CJ, Shipboard Scientists (2006) Proc Integr ODP, vol 304/305, College Station, TX. doi:10.2204/iodp.proc.304305.2006
  9. Bosch D, Jamais M, Boudier F, Nicolas A, Dautria JM, Agrinier P (2004) Deep and high temperature hydrothermal circulation in the Oman ophiolite—petrological and isotopic evidence. J Petrol 45:1181–1208. doi:10.1093/petrology/egh010 CrossRefGoogle Scholar
  10. Bouvier A, Ushikubo T, Kita N, Cavosie AJ, Kozdon R, Valley JW (2009) Li isotopes in Archean zircons. Eos Trans AGU 90(52) Fall Meet Suppl (abstract V14B-07)Google Scholar
  11. Cann JR, Blackman DK, Smith DK, McAllister E, Janssen B, Mello S, Avgerinos E, Pascoe AR, Escartin J (1997) Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature 385:329–332. doi:10.1038/385329a0 CrossRefGoogle Scholar
  12. Cannat M (1996) How thick is the magmatic crust at slow spreading oceanic ridges? J Geophys Res 101:2847–2857CrossRefGoogle Scholar
  13. Cavosie AJ, Valley JW, Wilde SA EIMF (2005) Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet Sci Lett 235:663–681CrossRefGoogle Scholar
  14. Cavosie AJ, Valley JW, Wilde SA, EIMF (2006) Correlated microanalysis of zircon: δ18O and U-Th-Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochim Cosmochim Acta 70:5601–5616. doi:10.1016/j.gca.2006.08.011 CrossRefGoogle Scholar
  15. Cavosie AJ, Valley JW, Wilde SA (2007) The oldest terrestrial mineral record: a review of 4400 to 4000 Ma detrital zircons from the Jack Hills, Western Australia. In: MJ van Kranendonk, RH Smithies, VC Bennett (eds) Earth’s oldest rocks. Dev Precambrian Geol 15:91–111Google Scholar
  16. Cavosie AJ, Kita NT, Valley JW (2009) Mantle oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. Am Mineral 9:926–934. doi:10.2138/am.2009.2982 CrossRefGoogle Scholar
  17. Coleman RG, Donato MM (1979) Oceanic plagiogranite revisited. In: Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, pp 149–167Google Scholar
  18. Coogan LA, Hinton RW (2006) Do the trace element compositions of detrital zircons require Hadean continental crust? Geology 34:633–636. doi:10.1130/G22737.1 CrossRefGoogle Scholar
  19. Coogan LA, Wilson RN, Gillis KM, MacLeod CJ (2001) Near-solidus evolution of oceanic gabbros: insights from amphibole geochemistry. Geochim Cosmochim Acta 65:4339–4357. doi:10.1016/S0016-7037(01)00714-1 CrossRefGoogle Scholar
  20. Crowley JL, Myers JS, Sylvester PJ, Cox RA (2005) Detrital zircon from the Jack Hills and Mount Narryer, Western Australia; evidence for diverse >4.0 Ga source rocks. J Geol 113:239–263. doi:0022-1376/2005/11303-0001 CrossRefGoogle Scholar
  21. Delacour A, Früh-Green GL, Frank M, Gutjahr M, Kelley DS (2008) Sr- and Nd isotope geochemistry of the Atlantis Massif (30°N, MAR): Implications for fluid fluxes and lithospheric heterogeneity. Chem Geol 254:19–35. doi:10.1016/j.chemgeo.2008.05.018 CrossRefGoogle Scholar
  22. deMartin BJ, Sohn RA, Canales JP, Humphris SE (2007) Kinematics and geometry of active detachment faulting beneath the trans-atlantic geotraverse (TAG) hydrothermal field on the Mid-Atlantic Ridge. Geology 35:711–714. doi:10.1130/G23718A.1 CrossRefGoogle Scholar
  23. Dick HJB, Natland JH, Alt JC, Bach W et al (2000) A long in situ section of lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179:31–51. doi:10.1016/S0012-821X(00)00102-3 CrossRefGoogle Scholar
  24. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part I: calibration and solubility models. J Petrol 36:1607–1631Google Scholar
  25. Dixon-Spulber S, Rutherford MJ (1983) The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J Petrol 24:1–25Google Scholar
  26. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Reviews in mineralogy and geochemistry, vol 43, pp 319–364Google Scholar
  27. Eiler JM, Farley KA, Valley JW, Hofmann AW, Stolper EM (1996) Oxygen-isotope constraints on the sources of Hawaiian volcanism. Earth Planet Sci Lett 144:453–468CrossRefGoogle Scholar
  28. Farver JR (1989) Oxygen self-diffusion in diopside with application to cooling rate determinations. Earth Planet Sci Lett 117:407–422Google Scholar
  29. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437. doi:10.1007/s00410-007-0201-0 CrossRefGoogle Scholar
  30. Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol 156:197–215. doi:10.1007/soo410-008-0281-5 CrossRefGoogle Scholar
  31. Gaggero L, Cortesogno L (1997) Metamorphic evolution of oceanic gabbros: recrystallization from subsolidus to hydrothermal conditions in the MARK area (ODP Leg 153). Lithos 40:105–131CrossRefGoogle Scholar
  32. Gao Y, Hoefs J, Przybilla R, Snow JE (2006) A complete oxygen isotope profile through the lower oceanic crust, ODP Hole 735B. Chem Geol 233:217–234CrossRefGoogle Scholar
  33. Gillis KM (1995) Controls on hydrothermal alteration in a section of fast-spreading ocean crust. Earth Planet Sci Lett 134:473–489CrossRefGoogle Scholar
  34. Godard M, Awaji S, Hansen H, Hellebrand E, Brunelli D, Johnson K, Yamasaki T, Maeda J, Abratis M, Christie D, Kato Y, Mariet C, Rosner M (2009) Geochemistry of a long in situ section of intrusive slow-spread oceanic lithosphere: results from IODP Site U1309 (Atlantis Massif, 30°N Mid-Atlantic-Ridge). Earth Planet Sci Lett 279:110–122. doi:10.1016/j.epsl.2008.12.034 CrossRefGoogle Scholar
  35. Gregory RT, Criss RE (1986) Isotopic exchange in open and closed systems. In: Valley JW, Taylor HP, O'Neil JR (eds) Reviews in mineralogy, vol 16, pp 91–127Google Scholar
  36. Gregory RT, Taylor HP Jr (1981) An oxygen-isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755CrossRefGoogle Scholar
  37. Grimes CB, John BE, Kelemen PB, Mazdab F, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) The trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35:643–646. doi:10.1130/G23603A.1 CrossRefGoogle Scholar
  38. Grimes CB, John BE, Cheadle MJ, Wooden JL (2008) Protracted construction of gabbroic crust at a slow-spreading ridge: Constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole U1309D (30ºN MAR). Geochem Geophys Geosyst 9:Q08012. doi:10.1029/2008GC002063 CrossRefGoogle Scholar
  39. Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, Schwartz JJ (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Mineral Petrol 158:757–783. doi:10.1007/s00410-009-0409-2 CrossRefGoogle Scholar
  40. Harrison TM (2009) The Hadean crust: evidence from >4 Ga zircons. Annu Rev Earth Planet Sci 37:479–505. doi:10.1146/annurev.earth.031208.100151 CrossRefGoogle Scholar
  41. Harrison TM, Schmitt AK, McCulloch MT, Lovera OM (2008) Early (≥ 4.5 Ga) formation of terrestrial crust: Lu-Hf, δ18O, and Ti-thermometry results for Hadean zircons. Earth Planet Sci Lett 268:476–486. doi:10.1016/j.epsl.2008.02.011 CrossRefGoogle Scholar
  42. Hart SR, Blusztajn JS, Dick HJB, Meyer PS, Muehlenbachs K (1999) The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochim Cosmochim Acta 63:4059–4080CrossRefGoogle Scholar
  43. Hofmann AE, Valley JW, Watson EB, Cavosie AJ, Eiler JM (2009) Sub-micron scale distributions of trace elements in zircon. Contrib Mineral Petrol. doi:10.1007/s00410-009-0385-6
  44. John BE, Foster DA, Murphy JM, Cheadle MJ, Baines AG, Fanning M, Copeland P (2004) Determining the cooling history of in situ lower oceanic crust—Atlantis Bank, SW Indian Ridge. Earth Planet Sci Lett 222:145–160. doi:10.1016/j.epsl.2004.02.014 CrossRefGoogle Scholar
  45. Jöns N, Bach W, Schroeder T (2009) Formation and alteration of plagiogranites in an ultramafic-hosted detachment fault at the Mid-Atlantic Ridge (ODP Leg 209). Contrib Mineral Petrol. doi:10.1007/s00410-008-0357-2
  46. Karson JA (1998) Internal structure of oceanic lithosphere: a perspective from tectonic windows. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at mid-ocean ridges. AGU, Washington, DC, pp 177–218Google Scholar
  47. Kelemen PB, Kikawa E, Miller DJ et al (2004) Proceedings of ODP initiative reports, vol 209. doi:10.2973/odp.proc.ir.209.2004
  48. Kelley DS (1996) Methane-rich fluids in the oceanic crust. J Geophys Res 101:2943–2962CrossRefGoogle Scholar
  49. Kelley DS, Früh-Green GL (1999) Abiogenic methane in deep-seated mid-ocean ridge environments: Insights from stable isotope analyses. J Geophys Res 104:10439–10460CrossRefGoogle Scholar
  50. Kempton PD, Hawkesworth CJ, Fowler M (1991) Geochemistry and isotopic composition of Gabbros from Layer 3 of the Indian Ocean crust, Hole 735B. In: Von Herzen RP, Robinson PT (eds) Proceedings of ODP, Scientific Results, vol 118, pp 127–143Google Scholar
  51. Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analyses and the effect of sample topography. Chem Geol 264:43–57. doi:10.1016/j.chemgeo.2009.02.012 CrossRefGoogle Scholar
  52. Klein EM (2003) Geochemistry of the igneous oceanic crust. In: Rudnick RL (ed) The crust: treatise on geochemistry, vol 3. Pergamon, Oxford, pp 433–464Google Scholar
  53. Koepke J, Feig ST, Snow J, Friese M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Mineral Petrol 146:414–432CrossRefGoogle Scholar
  54. Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within deep oceanic crust by hydrous partial melting of gabbros. Contrib Mineral Petrol 153:67–84. doi:10.1007/s00410-006-0135-y CrossRefGoogle Scholar
  55. Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada Batholith: the oxygen isotope record. J Petrol 49:1397–1426. doi:10.1093/petrology/egn030 CrossRefGoogle Scholar
  56. Lister CRB (1974) Penetration of water into hot rock. Geophys J Astron Soc 39:465–509Google Scholar
  57. Maas R, Kinny PD, Williams IS, Froude DO, Compston W (1992) The Earth’s oldest known crust: A geochronological and geochemical study of 3900–4200 Ma detrital zircons from Mt Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta 56:1281–1300. doi:10.1016/0016-7037(92)90062-N CrossRefGoogle Scholar
  58. Maeda J, Naslund HR, Jang YD, Kikama E, Tajima T, Blackburn WH (2002) High-temperature fluid migration within oceanic crust layer 3 gabbros: implications for the magmatic-hydrothermal transition at slow-spreading mid-ocean ridges. In Natland JH, Dick HJB, Miller DJ, Von Herzen RP (eds) Proceedings of the ODP, Scientific Results, vol 176. Ocean Drilling Program, College Station, pp 1–56Google Scholar
  59. Manning C, Weston PE, Mahon KI (1996) Rapid high temperature metamorphism of the East pacific Rise gabbros at Hess Deep. Earth Planet Sci Lett 144:123–132CrossRefGoogle Scholar
  60. Manning CE, MacLeod CJ, Weston PE (2000) Lower-cracking front at fast-spreading ridges: evidence from the East Pacific Rise and the Oman ophiolite, in Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program. Spec Pap Geol Soc Am 349:261–272Google Scholar
  61. Mattey D, Lowry D, Macpherson C (1994) Oxygen-isotope composition of mantle peridotite. Earth Planet Sci Lett 128:231–241CrossRefGoogle Scholar
  62. McCaig AM, Cliff RA, Escartin J, Fallick AE, MacLeod CJ (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35:935–938. doi:10.1130/G23657A.1 CrossRefGoogle Scholar
  63. McCaig AM, Delacour A, Fallick AE, Castelain T, Früh-Green GL (2010) Detachment fault control on hydrothermal circulation systems: interpreting the subsurface beneath the TAG hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic. AGU Monograph, Washington DC (in press)Google Scholar
  64. McCollom TM, Shock EL (1998) Fluid-rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration. J Geophys Res 103:547–575CrossRefGoogle Scholar
  65. Mével C, Cannat M (1991) Lithospheric stretching and hydrothermal processes in oceanic gabbros from slow spreading ridges. In: Peters T, Nicolas A, Coleman RG (eds) Ophiolite genesis and evolution of the oceanic lithosphere. Kluwer, Dordrecht, pp 293–312Google Scholar
  66. Michael PJ, Cornell WC (1998) Influence of spreading rate and magma supply on crystallization beneath mid-ocean ridges: evidence from chlorine and major element chemistry of mid-ocean ridge basalts. J Geophys Res 103:18325–18356CrossRefGoogle Scholar
  67. Muehlenbachs K (1986) Alteration of the ocean crust and the 18O history of seawater. In: Valley JW, Taylor HP, O’Neil JR (eds) Reviews in mineralogy, vol 16, pp 425–444Google Scholar
  68. Muehlenbachs K, Byerly G (1982) 18O-enrichments of silicic magmas caused by crystal fractionation at the Galapagos spreading center. Contrib Mineral Petrol 79:76–79CrossRefGoogle Scholar
  69. Natland JH, Dick HJB (2002) Stratigraphy and composition of gabbros drilled in Ocean Drilling Program Hole 735B, Southwest Indian Ridge: a synthesis of geochemical data. In Natland JH, Dick HJB, Miller DJ, Von Herzen RP (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 176. Ocean Drilling Program, College Station, pp 1–69Google Scholar
  70. Natland JH, Meyer PS, Dick HJB, Bloomer SH (1991) Magmatic oxides and sulfides in gabbroic rocks from Hole 735B and the later development of the liquid line of descent. In Von Herzen RP, Robinson PT, et al. (eds) Proceedings of the ODP, Scientific Results, vol 118. Ocean Drilling program, College Station, pp 75–111Google Scholar
  71. Nehlig P (1993) Interactions between magma chambers and hydrothermal systems: oceanic and ophiolitic constraints. J Geophys Res 98:19621–19633CrossRefGoogle Scholar
  72. Nicolas A, Mainprice D (2005) Burst of high-temperature seawater injection throughout accreting oceanic crust: a case study in Oman ophiolite. Terra Nova 17:326–330. doi:10.1111/j.1365-3121.2005.00617.x CrossRefGoogle Scholar
  73. Nicolas A, Mainprice D, Boudier F (2003) High-temperature seawater circulation throughout crust of oceanic ridges: a model derived from the Oman ophiolites. J Geophys Res 108:2371–2391. doi:10.1029/2002JB002094 CrossRefGoogle Scholar
  74. Niu Y, Gilmore T, Mackie S, Greig A, Bach W (2002) Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. Proc ODP Sci Results 176:1–60Google Scholar
  75. Page FZ, Ushikubo T, Kita NT, Riciputi LR, Valley JW (2007a) High-precision oxygen isotope analysis of picogram samples reveals 2 μm gradients and slow diffusion in zircon. Am Mineral 92:1772–1775CrossRefGoogle Scholar
  76. Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen F, Basei MAS, Valley JW (2007b) Zircons from kimberlite: new insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71:3887–3903. doi:10.1016/j.gca.2007.04.031 CrossRefGoogle Scholar
  77. Robinson PT, Erzinger J, Emmermann R (2002) The composition and origin of igneous and hydrothermal veins in the lower ocean crust—ODP Hole 735B, Southwest Indian Ridge. Proc ODP Sci Results 176:1–66. doi:10.2973/odp.proc.sr.176.019.2002 Google Scholar
  78. Rollinson H (2008) Ophiolitic trondhjemites: a possible analogue for Hadean felsic ‘crust’. Terra Nova 20:364–369. doi:10.1111/j.1365-3121.2008.00829.x CrossRefGoogle Scholar
  79. Schroeder T, Cheadle MJ, Dick HJB, Faul U, Casey JF, Kelemen PB (2007) Nonvolcanic seafloor spreading and corner-flow rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge: a structural synthesis of ODP Leg 209. Geochem Geophys Geosyst 8:Q06015. doi:10.1029/2006GC001567 CrossRefGoogle Scholar
  80. Schwartz J, John BE, Cheadle MJ, Miranda E, Grimes CB, Wooden J, Dick HJB (2005) Inherited zircon and the magmatic construction of oceanic crust. Science 310:654–657. doi:10.1126/science.1116349 CrossRefGoogle Scholar
  81. Singh SC, Crawford WC, Carton H, Seher T, Combier V, Cannat M, Canales JP, Düsünür D, Escartin J, Miranda JM (2006) Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature 442:1029–1032. doi:10.1038/nature05105 CrossRefGoogle Scholar
  82. Smith DK, Escartín J, Schouten H, Cann JR (2008) Fault rotation and core complex formation: significant processes in seafloor formation at slow-spreading mid-ocean ridges (Mid-Atlantic Ridge, 13º–15ºN). Geochem Geophys Geosyst 9:Q03003. doi:10.1029/2007GC001699 CrossRefGoogle Scholar
  83. Stakes D, Mével C, Cannat M, Chaput T (1991) Metamorphic stratigraphy of Hole 735B. In: Von Herzen RP, Robinson PT (eds) Proceedings of ODP Scientific Results, vol 118, pp 153–180Google Scholar
  84. Taylor HP, Sheppard SMF (1986). Igneous rocks: I. processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Reviews in mineralogy, vol 16, pp 227–271Google Scholar
  85. Trail D, Mojzsis SJ, Harrison TM, Schmitt AK, Watson EB, Young ED (2007) Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. Geochem Geophys Geosys 8:Q06014. doi:10.1029/2006GC001449 CrossRefGoogle Scholar
  86. Tucholke BE, Lin J (1994) A geological model for the structure of ridge segments in slow spreading ocean crust. J Geophys Res 99:11937–11958CrossRefGoogle Scholar
  87. Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J Geophys Res 103:9857–9866CrossRefGoogle Scholar
  88. Ushikubo T, Kita NT, Cavosie AJ, Wilde SA, Rudnick RL, Valley JW (2008) Lithium in Jack Hills zircons: evidence for extensive weathering of Earth’s earliest crust. Earth Planet Sci Lett 272:666–676CrossRefGoogle Scholar
  89. Valley JW (2001) Stable isotope thermometry at high temperatures. In: Valley JW, Cole DR (eds) Reviews in mineralogy and geochemistry, vol 43, pp 365–413Google Scholar
  90. Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Reviews in mineralogy and geochemistry, vol 53, pp 343–385Google Scholar
  91. Valley JW, Chiarenzelli JR, McLelland JM (1994) Oxygen isotope geochemistry of zircon. Earth Planet Sci Lett 126:187–206CrossRefGoogle Scholar
  92. Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11CrossRefGoogle Scholar
  93. Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30:351–354CrossRefGoogle Scholar
  94. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation. Contrib Mineral Petrol 150:561–580. doi:10.1007/s00410-005-0025-8 CrossRefGoogle Scholar
  95. Vanko DA, Stakes DS (1991) Fluids in oceanic layer 3: evidence from veined rocks, Hole 735B, Southwest Indian Ridge. In Von Herzen RP, Robinson PT (eds) Proceedings of ODP, Scientific Results, vol 118, pp 181–215Google Scholar
  96. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844. doi:10.1126/science.1110873 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Craig B. Grimes
    • 1
    • 3
  • Takayuki Ushikubo
    • 1
  • Barbara E. John
    • 2
  • John W. Valley
    • 1
  1. 1.Department of GeoscienceWiscSIMS, University of WisconsinMadisonUSA
  2. 2.Department of Geology and GeophysicsUniversity of WyomingLaramieUSA
  3. 3.Department of GeosciencesMississippi State UniversityMississippi StateUSA

Personalised recommendations