Contributions to Mineralogy and Petrology

, Volume 160, Issue 6, pp 931–950 | Cite as

Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea

  • Marco Brenna
  • Shane J. Cronin
  • Ian E. M. Smith
  • Young Kwan Sohn
  • Karoly Németh
Original Paper


High-resolution, stratigraphically ordered samples of the Udo tuff cone and lava shield offshore of Jeju Island, South Korea, show complex geochemical variation in the basaltic magmas that fed the eruption sequence. The eruption began explosively, producing phreatomagmatic deposits with relatively evolved alkali magma. The magma became more primitive over the course of the eruption, but the last magma to be explosively erupted had shifted back to a relatively evolved composition. A separate sub-alkali magma batch was subsequently effusively erupted to form a lava shield. Absence of weathering and only minor reworking between the tuff and overlying lava implies that there was no significant time break between the eruptions of the two magma batches. Modelling of the alkali magma suggests that it was generated from a parent melt in garnet peridotite at c. 3 to 3.5 GPa and underwent mainly clinopyroxene + olivine ± spinel fractionation at c. 1.5 to 2 GPa. The sub-alkali magma was, by contrast, generated from a chemically different peridotite with residual garnet at c. 2.5 GPa and evolved through olivine fractionation at a shallower level compared to its alkali contemporary. The continuous chemostratigraphic trend in the tuff cone, from relatively evolved to primitive and back to evolved, is interpreted to have resulted from a magma batch having risen through a single dyke and erupted the batch’s head, core and margins, respectively. The alkali magma acted as a path-opener for the sub-alkali magma. The occurrence of the two distinct batches suggests that different magmatic systems in the Jeju Island Volcanic Field have interacted throughout its history. The polymagmatic nature of this monogenetic eruption has important implications for hazard forecasting and for our understanding of basaltic field volcanism.


Monogenetic volcanism Basalt geochemistry Jeju Island Plumbing system Alkali basalt 



Appreciation is expressed to Bob Stewart, Richard Price, Greg Valentine, Ting Wang and Mary Gee for constructive discussion and comments and to Chang Woo Kwon for able assistance in the field. Thorough review by Greg Valentine, Amanda Hintz and an anonymous reviewer greatly improved the manuscript. This project was supported by the Foundation for Research, Science and Technology International Investment Opportunities Fund Project MAUX0808 to SJC “Facing the challenge of Auckland volcanism”, by the Basic Science Research Program to YKS (2009-0079427) through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology and by a Massey University Vice-chancellor’s Scholarship to MB.

Supplementary material

410_2010_515_MOESM1_ESM.pdf (29 kb)
Supplementary material 1 (PDF 28 kb)


  1. Albarède F (1995) Introduction to geochemical modeling. Cambridge University Press, Cambridge UKCrossRefGoogle Scholar
  2. Anderson TA Jr, Swihart GH, Artioli G, Geiger CA (1984) Segregation vesicles, gas filter-pressing, and igneous differentiation. J Geol 92(1):55–72CrossRefGoogle Scholar
  3. Beattie P, Ford C, Russell D (1991) Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib Mineral Petrol 109(2):212–224CrossRefGoogle Scholar
  4. Blondes MS, Reiners PW, Ducea MN, Singer BS, Chesley J (2008) Temporal-compositional trends over short and long time-scales in basalts of the Big Pine Volcanic Field, California. Earth Planet Sci Lett 269(1–2):140–154CrossRefGoogle Scholar
  5. Bradshaw TK, Smith EI (1994) Polygenetic Quaternary volcanism at Crater Flat, Nevada. J Volcanol Geotherm Res 63(3–4):165–182CrossRefGoogle Scholar
  6. Carracedo JC, Rodriguez Badiola E (1993) Evolución geológica y magmática de la isla de Lanzarote (Islas Canarias). Rev Acad Canaria Cien 5(4):25–58Google Scholar
  7. Carracedo JC, Rodriguez Badiola E, Soler V (1992) The 1730–1736 eruption of Lanzarote, Canary Islands: a long, high-magnitude basaltic fissure eruption. J Volcanol Geotherm Res 53(1–4):239–250CrossRefGoogle Scholar
  8. Choi SH, Kwon S-T, Mukasa SB, Sagong H (2005) Sr–Nd–Pb isotope and trace element systematics of mantle xenoliths from Late Cenozoic alkaline lavas, South Korea. Chem Geol 221(1–2):40–64CrossRefGoogle Scholar
  9. Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Longman, HarlowGoogle Scholar
  10. Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34(6):429–432CrossRefGoogle Scholar
  11. Diez M, Connor CB, Kruse SE, Connor L, Savov IP (2009) Evidence of small-volume igneous diapirism in the shallow crust of the Colorado Plateau, San Rafael Desert, Utah. Lithosphere 1(6):328–336CrossRefGoogle Scholar
  12. Duda A, Schmincke H-U (1985) Polybaric differentiation of alkali basaltic magmas: evidence from green-core clinopyroxenes (Eifel, FRG). Contrib Mineral Petrol 91:340–353CrossRefGoogle Scholar
  13. Elkins LJ, Gaetani GA, Sims KWW (2008) Partitioning of U and Th during garnet pyroxenite partial melting: Constraints on the source of alkaline ocean island basalts. Earth Planet Sci Lett 265(1–2):270–286CrossRefGoogle Scholar
  14. Elthon D, Scarfe CM (1984) High-pressure phase equilibria of high-magnesia basalt and the genesis of primary oceanic basalts. Am Mineral 69:1–15Google Scholar
  15. Eom Y, Yang K-H, Nam B, Hwang B-H, Kim J (2007) Gabbroic xenoliths in alkaline basalts from Jeju Island. J Mineral Soc Korea 20(2):103–114Google Scholar
  16. Erlund EJ, Cashman KV, Wallace PJ, Pioli L, Rosi M, Johnson E, Granados HD (2009) Compositional evolution of magma from Parícutin Volcano, Mexico: the tephra record. J Volcanol Geotherm Res In Press, Corrected ProofGoogle Scholar
  17. Ferrucci M, Pertusati S, Sulpizio R, Zanchetta G, Pareschi MT, Santacroce R (2005) Volcaniclastic debris flows at La Fossa Volcano (Vulcano Island, southern Italy): Insights for erosion behavior of loose pyroclastic material on steep slopes. J Volcanol Geotherm Res 145:173–191CrossRefGoogle Scholar
  18. Fitton JG, Saunders AD, Norry MJ, Hardarson BS, Taylor RN (1997) Thermal and chemical structure of the Iceland plume. Earth Planet Sci Lett 153:197–208CrossRefGoogle Scholar
  19. Frey FA, Green DH, Roy SD (1978) Integrated models of basalt petrogenesis: a study of quartz tholeiites to olivine melilitites from South Eastern Australia utilizing geochemical and experimental petrological data. J Petrol 19(3):463–513Google Scholar
  20. Fujimaki H, Tatsumoto M, Aoki K-I (1983) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. J Geophys Res Supplement 89:B662–B672Google Scholar
  21. Halliday AN, Lee D-C, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133(3–4):379–395CrossRefGoogle Scholar
  22. Herzberg C (1995) Generation of plume magmas through time: an experimental perspective. Chem Geol 126(1):1–16CrossRefGoogle Scholar
  23. Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114(4):477–489CrossRefGoogle Scholar
  24. Holloway JR, Blank JG (1994) Application of experimental results to C-O-H species in natural melts. In: Carroll MR, Holloway JR (eds) Volatiles in magmas. Mineralogical Society of America, Washington DC, pp 187–230Google Scholar
  25. Houghton BF, Smith RT (1993) Recycling of magmatic clasts during explosive eruptions: estimating the true juvenile content of phreatomagmatic volcanic deposits. Bull Volcanol 55(6):414–420CrossRefGoogle Scholar
  26. Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implications for magmatic processes within the mantle. In: Irving AJ, Dungan MA (eds) The Jackson volume. American Journal of Science, vol 280-A, pp 389–426Google Scholar
  27. Kang S (2003) Benthic foraminiferal biostratigraphy and paleoenvironments of the Seogwipo Formation, Jeju Island, Korea. J Paleontol Soc Korea 19(2):63–153Google Scholar
  28. Kil Y-W, Shin H-J, Yun S-H, Koh J-S, Ahn U-S (2008) Geochemical characteristics of mineral phases in the mantle xenoliths from Sunheul-ri, Jeju Island. J Mineral Soc Korea 21(4):373–382Google Scholar
  29. Kim I-S, Lee D (2000) Magnetostratigrphy and AMS of the Seoguipo formation and Seoguipo Trachyte of Jeju Island. J Geol Soc Korea 36:163–180Google Scholar
  30. Kim KH, Nagao K, Tanaka T, Sumino H, Nakamura T, Okuno M, Lock J-B, Youn JS, Song J (2005) He–Ar and Nd–Sr isotopic compositions of ultramafic xenoliths and host basalts from the Korean peninsula. Geochem J 39:341–356CrossRefGoogle Scholar
  31. Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Ac 66(17):3109–3123CrossRefGoogle Scholar
  32. Koh J-S, Yun S-H, Hyeon G-B, Lee M-W, Gil Y-W (2005) Petrology of the basalt in the Udo monogenetic volcano, Jeju Island. J Petrol Soc Korea 14(1):45–60Google Scholar
  33. Koh G-W, Park J-B, Park Y-S (2008) The study on geology and volcanism in Jeju Island (I): petrochemistry and 40Ar/39Ar absolute ages of the subsurface volcanic rock cores from boreholes in the eastern lowland of Jeju Island. Econ Env Geol 41(1):93–113Google Scholar
  34. Kokelaar BP (1983) The mechanism of Surtseyan volcanism. J Geol Soc 140(6):939–944CrossRefGoogle Scholar
  35. Kubo A, Fukuyama E (2003) Stress field along the Ryukyu Arc and the Okinawa Trough inferred from moment tensors of shallow earthquakes. Earth Planet Sci Lett 210(1–2):305–316CrossRefGoogle Scholar
  36. Lee K, Yang W-S (2006) Historical Seismicity of Korea. Bull Seismol Soc Am 96(3):846–855CrossRefGoogle Scholar
  37. Luhr JF (2001) Glass inclusions and melt volatile contents at Parícutin Volcano, Mexico. Contrib Mineral Petrol 142:261–283CrossRefGoogle Scholar
  38. Luhr JF, Carmichael ISE (1985) Jorullo Volcano, Michoacán, Mexico (1759–1774): the earliest stage of fractionation in calc-alkaline magmas. Contrib Mineral Petrol 90(2):142–161CrossRefGoogle Scholar
  39. McBirney AR, Taylor HP, Armstrong RL (1987) Paricutin re-examined: a classic example of crustal assimilation in calc-alkaline magma. Contrib Mineral Petrol 95(1):4–20CrossRefGoogle Scholar
  40. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  41. McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare Earth element concentrations. J Petrol 32(1):1021–1091Google Scholar
  42. Moore JG (1970) Water content of basalt erupted on the ocean floor. Contrib Mineral Petrol 28(4):272–279CrossRefGoogle Scholar
  43. Németh K, Cronin SJ (2007) Syn- and post-eruptive erosion, gully formation, and morphological evolution of a tephra ring in tropical climate erupted in 1913 in West Ambrym, Vanuatu. Geomorphology 86(1–2):115–130CrossRefGoogle Scholar
  44. Németh K, White JDL, Reay A, Martin U (2003) Compositional variation during monogenetic volcano growth and its implications for magma supply to continental volcanic fields. J Geol Soc 160:523–530CrossRefGoogle Scholar
  45. Németh K, Cronin SJ, Charley D, Harrison M, Garae E (2006) Exploding lakes in Vanuatu—“Surtseyan-style” eruptions witnessed on Ambae Island. Episodes 29(2):87–93Google Scholar
  46. Nicholson H, Condomines M, Fitton JG, Fallick AE, Grönvold K, Rogers G (1991) Geochemical and isotopic evidence for crustal assimilation beneath Krafla, Iceland. J Petrol 32(5):1005–1020Google Scholar
  47. Okada Y, Yamamoto E (1991) Dyke intrusion model for the 1989 seismovolcanic activity off Ito, central Japan. J Geophys Res 96(B6):10361–10376CrossRefGoogle Scholar
  48. Pearce JA (2008) Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100:14–48CrossRefGoogle Scholar
  49. Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285CrossRefGoogle Scholar
  50. Petrelli M, Poli G, Perugini D, Peccerillo A (2005) PetroGraph: a new software to visualize, model, and present geochemical data in igneous petrology. Geochem Geophys Geosys 6(Q07011)Google Scholar
  51. Reiners PW (2002) Temporal-compositional trends in intraplate basalt eruptions: implications for mantle heterogeneity and melting processes. Geochem Geophys Geosys 3(2)Google Scholar
  52. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29(4):275–289CrossRefGoogle Scholar
  53. Rollinson HR (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Group, Singapore, p 352Google Scholar
  54. Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336CrossRefGoogle Scholar
  55. Rutherford MJ (2008) Magma ascent rates. Rev Mineral Geochem 69:241–271CrossRefGoogle Scholar
  56. Salters VJM, Longhi J (1999) Trace element partitioning during the initial stages of melting beneath mid-ocean ridges. Earth Planet Sci Lett 166(1–2):15–30CrossRefGoogle Scholar
  57. Siebe C, Rodríguez-Lara V, Schaaf P, Abrams M (2004) Geochemistry, Sr–Nd isotope composition, and tectonic setting of Holocene Pelado, Guespalapa and Chichinautzin scoria cones, south of Mexico City. J Volcanol Geotherm Res 130(3–4):197–226CrossRefGoogle Scholar
  58. Sinigoi S, Comin-Chiaramonti P, Demarchi G, Siena F (1983) Differentiation of partial melts in the mantle: evidence from the Balmuccia peridotite, Italy. Contrib Mineral Petrol 82(4):351–359CrossRefGoogle Scholar
  59. Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Mineral Petrol 155:511–527CrossRefGoogle Scholar
  60. Sohn Y-K (1996) Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea. Geol Soc Am Bull 108:1199–1211CrossRefGoogle Scholar
  61. Sohn Y-K, Chough S-K (1992) The Ilchulbong tuff cone, Cheju Island, South Korea: depositional processes and evolution of an emergent, Surtseyan-type tuff cone. Sedimentology 39:523–544CrossRefGoogle Scholar
  62. Sohn Y-K, Chough SK (1993) The Udo tuff cone, Cheju Island, South Korea: transformation of pyroclastic fall into debris fall and grain flow on a steep volcanic cone slope. Sedimentology 40:769–786CrossRefGoogle Scholar
  63. Sohn Y-K, Park K-H (2005) Composite tuff ring/cone complexes in Jeju Island, Korea: possible consequence of substrate collapse and vent migration. J Volcanol Geotherm Res 141:157–175CrossRefGoogle Scholar
  64. Sohn Y-K, Park K-H, Yoon S-H (2008) Primary versus secondary and subaerial versus submarine hydrovolcanic deposits in the subsurface of Jeju Island, Korea. Sedimentology 55:899–924CrossRefGoogle Scholar
  65. Spera FJ (1984) Carbon dioxide in petrogenesis III: role of volatiles in the ascent of alkaline magma with special reference to xenolith-bearing mafic lavas. Contrib Mineral Petrol 88:217–232CrossRefGoogle Scholar
  66. Stormer JCJ, Nicholls J (1978) XLFRAC: a program for the interactive testing of magmatic differentiation models. Comput Geosci 4:143–159CrossRefGoogle Scholar
  67. Strong M, Wolff J (2003) Compositional variations within scoria cones. Geology 31(2):143–146CrossRefGoogle Scholar
  68. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society, London, pp 313–345Google Scholar
  69. Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Mineral 68:859–879Google Scholar
  70. Tatsumi Y, Shukuno H, Yoshikawa M, Chang Q, Sato K, Lee M-W (2005) The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. J Petrol 46(3):523–553CrossRefGoogle Scholar
  71. Tiepolo M, Bottazzi P, Foley SF, Oberti R, Vannucci R, Zanetti A (2001) Fractionation of Nb and Ta from Zr and Hf at mantle depths: the role of titanian pargasite and kaersutite. J Petrol 42(1):221–232CrossRefGoogle Scholar
  72. Ukawa M, Tsukahara H (1996) Earthquake swarms and dike intrusions off the east coast of Izu Peninsula, central Japan. Tectonophysics 253(3–4):285–303CrossRefGoogle Scholar
  73. Ulmer P (1989) The dependence of the Fe2+-Mg cation-partitioning between olivine and basaltic liquid on pressure, temperature and composition. Contrib Mineral Petrol 101:261–273CrossRefGoogle Scholar
  74. Valentine GA, Gregg TKP (2008) Continental basaltic volcanoes—Processes and problems. J Volcanol Geotherm Res 177:857–873CrossRefGoogle Scholar
  75. Valentine GA, Hirano N (2010) Mechanisms of low-flux intraplate volcanic fields—Basin and Range (North America) and northwest Pacific Ocean. Geology 38(1):55–58CrossRefGoogle Scholar
  76. Valentine GA, Krogh KEC (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic center—the role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth Planet Sci Lett 246:217–230CrossRefGoogle Scholar
  77. Valentine GA, Perry FV (2007) Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261:201–216CrossRefGoogle Scholar
  78. Valentine GA, Perry FV, Krier D, Keating GN, Kelley RE, Cogbill AH (2006) Small-volume basaltic volcanoes: Eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol Soc Am Bull 118(11/12):1313–1330CrossRefGoogle Scholar
  79. Valentine GA, Krier DJ, Perry FV, Heiken G (2007) Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J Volcanol Geotherm Res 161(1–2):57–80CrossRefGoogle Scholar
  80. Verwoerd WJ, Chevallier L (1987) Contrasting types of surtseyan tuff cones on Marion and Prince Edward islands, southwest Indian Ocean. Bull Volcanol 49:399–417CrossRefGoogle Scholar
  81. Walker GPL (1993) Basaltic-volcano systems. In: Prichard HM, Alabaster T, Harris NBW, Neary CR (eds) Magmatic processes and plate tectonics. Geological Society, London, pp 3–38Google Scholar
  82. Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60CrossRefGoogle Scholar
  83. White JDL (1991) The depositional record of small, monogenetic volcanoes within terrestrial basins. In: Fisher RV, Smith GA (eds) Sedimentation in volcanic settings. Society for Sedimentary Geology, Tulsa, pp 155–171Google Scholar
  84. Wood CA (1979) Monogenetic volcanoes of the terrestrial planets. In: Proceedings of the 10th lunar planetary science conference, Pergamon Press, New York, pp 2815–2840Google Scholar
  85. Wood BJ (2004) Melting of fertile peridotite with variable amounts of H2O. Geophys Monog Series 150:69–80Google Scholar
  86. Xu W-L, Gao S, Yang D-B, Pei F-P, Wang Q-H (2009) Geochemistry of eclogite xenoliths in Mesozoic adakitic rocks from Xuzhou-Suzhou area in central China and their tectonic implications. Lithos 107(3–4):269–280CrossRefGoogle Scholar
  87. Yang K-H (2004) Fluid inclusions trapped in xenoliths from the lower crust/upper mantle beneath Jeju Island (I): a preliminary study. J Petrol Soc Korea 13(1):34–45Google Scholar
  88. Yi S, Yun H, Yoon S (1998) Calcareous nannoplankton from the Seoguipo Formation of Cheju Island, Korea and its paleoceanographic implications. Paleontol Res 2:253–265Google Scholar
  89. Yoo HJ, Herrmann RB, Cho KH, Lee K (2007) Imaging the three-dimensional crust of the Korean Peninsula by joint inversion of surface-wave dispersion and teleseismic receiver functions. Bull Seismol Soc Am 97(3):1002–1011CrossRefGoogle Scholar
  90. Yu J, Yang K, Hwang B, Lee S (2009) Textural and geochemical implications of spinel-peridotite xenoliths(Type I) in basaltic rocks from Jeju Island, South Korea. In: Eos transactions AGU, fall meeting supplement, abstract V13A-1998, vol 90(52)Google Scholar
  91. Zeng L, Liang F, Chen Z, Liu F, Xu Z (2009) Metamorphic garnet pyroxenite from the 540–600 m main borehole of the Chinese Continental Scientific Drilling (CCSD) project. Tectonophysics 475(2):396–412CrossRefGoogle Scholar
  92. Zhi X, Song Y, Frey FA, Feng J, Zhai M (1990) Geochemistry of Hannuoba basalts, eastern China: Constraints on the origin of continental alkalic and tholeiitic basalt. Chem Geol 88(1–2):1–33CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marco Brenna
    • 1
  • Shane J. Cronin
    • 1
  • Ian E. M. Smith
    • 2
  • Young Kwan Sohn
    • 3
  • Karoly Németh
    • 1
  1. 1.Volcanic Risk SolutionsMassey UniversityPalmerston NorthNew Zealand
  2. 2.School of Geography, Geology and Environmental ScienceThe University of AucklandAucklandNew Zealand
  3. 3.Department of Earth & Environmental SciencesGyeongsang National UniversityJinjuSouth Korea

Personalised recommendations