Contributions to Mineralogy and Petrology

, Volume 160, Issue 5, pp 683–704 | Cite as

Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations

  • Lydéric FranceEmail author
  • Juergen Koepke
  • Benoit Ildefonse
  • Sarah B. Cichy
  • Fabien Deschamps
Original Paper


In ophiolites and in present-day oceanic crust formed at fast spreading ridges, oceanic plagiogranites are commonly observed at, or close to the base of the sheeted dike complex. They can be produced either by differentiation of mafic melts, or by hydrous partial melting of the hydrothermally altered sheeted dikes. In addition, the hydrothermally altered base of the sheeted dike complex, which is often infiltrated by plagiogranitic veins, is usually recrystallized into granoblastic dikes that are commonly interpreted as a result of prograde granulitic metamorphism. To test the anatectic origin of oceanic plagiogranites, we performed melting experiments on a natural hydrothermally altered dike, under conditions that match those prevailing at the base of the sheeted dike complex. All generated melts are water saturated, transitional between tholeiitic and calc-alkaline, and match the compositions of oceanic plagiogranites observed close to the base of the sheeted dike complex. Newly crystallized clinopyroxene and plagioclase have compositions that are characteristic of the same minerals in granoblastic dikes. Published silicic melt compositions obtained in classical MORB fractionation experiments also broadly match the compositions of oceanic plagiogranites; however, the compositions of the coexisting experimental minerals significantly deviate from those of the granoblastic dikes. Our results demonstrate that hydrous partial melting is a likely common process in the root zone of the sheeted dike complex, starting at temperatures exceeding 850°C. The newly formed melt can either crystallize to form oceanic plagiogranites or may be recycled within the melt lens resulting in hybridized and contaminated MORB melts. It represents the main MORB crustal contamination process. The residue after the partial melting event is represented by the granoblastic dikes. Our results support a model with a dynamic melt lens that has the potential to trigger hydrous partial melting reactions in the previously hydrothermally altered sheeted dikes. A new thermometer using the Al content of clinopyroxene is also elaborated.


Mid-ocean ridge Axial magma chamber Hydrothermal system Sheeted dike complex Partial melting Experimental petrology Oceanic plagiogranite Granoblastic dikes 



We express our warm thanks to the various people involved at different technical stages of this work: Otto Diedrich for his beautiful thin sections, Wanja Dziony for his assistance with the microprobe analyses, and Tatiana Shishkina for her assistance with the FTIR analyses. Constructive reviews by Etienne Médard, Craig Lundstrom, and an anonymous reviewer are gratefully acknowledged. Dr Salim Al Busaidi, Director General of Minerals, Ministry of Commerce and Industry of the Sultanate of Oman, for allowing us to conduct field work in the Oman ophiolite.

Supplementary material

410_2010_502_MOESM1_ESM.doc (799 kb)
(DOC 799 kb)
410_2010_502_MOESM2_ESM.xls (76 kb)
(XLS 75 kb)


  1. Albarède F, Provost A (1977) Petrological and geochemical mass balance equations: an algorithm for least-square fitting and general error analysis. Comput Geosci 3:309–326. doi: 10.1016/0098-3004(77)90007-3 CrossRefGoogle Scholar
  2. Amri I, Benoit M, Ceuleneer G (1996) Tectonic setting for the genesis of oceanic plagiogranites: evidence from a paleospreading structure in the Oman ophiolite. Earth Planet Sci Lett 139:177–194CrossRefGoogle Scholar
  3. Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF: a Pascal program to assess equilibria among Fe-Mg-Mn-Ti oxides, pyroxenes, olivine, and quartz. Comput Geosci 19:1333–1350. doi: 10.1016/0098-3004(93)90033-2 CrossRefGoogle Scholar
  4. Bach W, Erzinger J, Alt JC, Teagle DAH (1996) Chemistry of the lower sheeted dike complex, Hole 504B (Leg 148): influence of magmatic differentiation and hydrothermal alteration. In: Alt JC, Kinoshita H, Stokking LB, Michael PJ (eds) Proceedings of the ODP, Scientific Results, 148, College Station, TX (Ocean Drilling Program), pp 39–55. doi: 10.2973/
  5. Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine—orthopyroxene—spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Miner Petrol 107:27–40CrossRefGoogle Scholar
  6. Barker F (1979) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, p 659Google Scholar
  7. Beard JS, Lofgren GE (1989) Effect of water on the composition of partial melts of greenstone and amphibolite. Science 244:195–197CrossRefGoogle Scholar
  8. Beard JS, Lofgren GE (1991) Dehydration melting and water saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32:365–401Google Scholar
  9. Beccaluva L, Ohnenstetter D, Ohnenstetter M, Venturelli G (1977) The trace element geochemistry of Corsican ophiolites. Contrib Miner Petrol 64:11–31CrossRefGoogle Scholar
  10. Beccaluva L, Chinchilla-Chaves AL, Coltorti M, Giunta G, Siena F, Vaccaro C (1999) Petrological and structural significance of the Santa Elena-Nicoya ophiolitic complex in Costa Rica and geodynamic implications. Eur J Miner 11:1091–1107Google Scholar
  11. Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuck D, Koepke J (2002) A combined rapid-quench and H2-membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am Miner 87:1717–1726Google Scholar
  12. Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46:135–167CrossRefGoogle Scholar
  13. Bonev N, Stampfli G (2009) Gabbro, plagiogranite and associated dykes in the supra-subduction zone Evros Ophiolites, NE Greece. Geol Mag 146(1):72–91. doi: 10.1017/S0016756808005396 CrossRefGoogle Scholar
  14. Boudier F, Godard M, Armbruster C (2000) Significance of gabbronorite occurrence in the crustal section of the Semail ophiolite. Mar Geophys Res 21:307–326. doi: 10.1023/A:1026726232402 CrossRefGoogle Scholar
  15. Brophy JG (2008) A study of rare earth element (REE)-SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating. Contrib Miner Petrol 156:337–357. doi: 10.1007/s00410-008-0289-x CrossRefGoogle Scholar
  16. Brophy JG (2009) La-SiO2 and Yb-SiO2 systematics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite. Contrib Miner Petrol 158:99–111. doi: 10.1007/s00410-008-0372-3 CrossRefGoogle Scholar
  17. Coleman RG, Donato MM (1979) Oceanic plagiogranite revisited. In: Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, pp 149–167Google Scholar
  18. Coogan LA (2003) Contaminating the lower crust in the Oman ophiolite. Geology 31(12):1065–1068. doi: 10.1130/G20129.1 CrossRefGoogle Scholar
  19. Coogan LA, Mitchell NC, O’Hara MJ (2003) Roof assimilation at fast spreading ridges: an investigation combining geophysical, geochemical, and field evidence. J Geophys Res 108(B1):2002. doi: 10.1029/2001JB001171 CrossRefGoogle Scholar
  20. Cordier C, Caroff M, Juteau T, Fleutelot C, Hémond C, Drouin M, Cotton J, Bollinger C (2007) Bulk-rock geochemistry and plagioclase zoning in lavas exposed along the northern flank of the Western Blanco depression (Northeast Pacific): insight into open-system magma chamber processes. Lithos 99:289–311CrossRefGoogle Scholar
  21. Dixon S, Rutherford MJ (1979) Plagiogranites as late-stage immiscible liquids in ophiolite and mid-oceanic ridge suites: an experimental study. Earth Planet Sci Lett 45:45–60CrossRefGoogle Scholar
  22. Dixon-Spulber S, Rutherford MJ (1983) The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J Petrol 24:1–25Google Scholar
  23. Dubois M (1983) Plagiogranite and hydrothermalism: an approach from Cyprus and Oman ophiolitic complexes. Ph.D. dissertation, University of Nancy 1, FranceGoogle Scholar
  24. Dziony W, Koepke J, Holtz F (2008) Data report: petrography and phase analyses in lavas and dikes from the Hole 1256D (ODP Leg 206 and IODP Expedition 309, East Pacific Rise). In: Teagle DAH, Alt JC, Umino S, Miyashita S, Banerjee NR, Wilson DS, and the Expedition 309/312 Scientists. Proceedings of IODP, 309/312, Washington, DC (Integrated Ocean Drilling Program Management International, Inc.). doi: 10.2204/iodp.proc.309312.201.2008
  25. Einaudi F, Pezard P, Cocheme JJ, Coulon C, Laverne C, Godard M (2000) Petrography, geochemistry and physical properties of continuous extrusive section from the Sarami Massif, Semail ophiolite. Mar Geophys Res 21:387–407CrossRefGoogle Scholar
  26. Ernst WG, Liu J (1998) Experimental phase-equilibrium study of Al- and Ti-contents of calcic amphibole in MORB: a semiquantitative thermobarometer. Am Miner 83:952–969Google Scholar
  27. Feig S, Koepke J, Snow J (2006) Effect of water on tholeiitic basalt phase equilibria—an experimental study under oxidizing conditions. Contrib Miner Petrol 152:611–638. doi:  10.1007/s00410-006-0123-2 Google Scholar
  28. Flagler PA, Spray JG (1991) Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology 19:70–73CrossRefGoogle Scholar
  29. Floyd PA, Yaliniz MK, Goncuoglu MC (1998) Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, central Anatolian Crystalline Complex, Turkey. Lithos 42:225–241CrossRefGoogle Scholar
  30. France L, Nicollet C (2010) MetaRep, an extended CMAS 3D program to visualize mafic (CMAS, ACF-S, ACF-N), and pelitic (AFM-K, AFM-S, AKF-S) projections. Comput Geosci (in press). doi: 10.1016/j.cageo.2010.01.001
  31. France L, Ildefonse B, Koepke J (2009a) The sheeted dike/Gabbro transition in the Oman ophiolite and in the IODP Hole 1256D: fossilisation of a dynamic melt lens at fast spreading ridges. Geochem Geophys Geosyst 10:Q10O19. doi: 10.1029/2009GC002652 CrossRefGoogle Scholar
  32. France L, Ouillon N, Chazot G, Kornprobst J, Boivin P (2009b) CMAS 3D, a new program to visualize and project major elements compositions in the CMAS system. Comput Geosci 35:1304–1310. doi: 10.1016/j.cageo.2008.07.002 CrossRefGoogle Scholar
  33. France L, Ildefonse B, Koepke J, Bech F (2010) A new method to estimate the oxidation state of basaltic series from microprobe analyses. J Volcanol Geothermal Res 189:340–346. doi: 10.1016/j.jvolgeores.2009.11.023 CrossRefGoogle Scholar
  34. Gaetani GA, Grove TL, Bryan WB (1993) The influence of water on the petrogenesis of subduction-related igneous rocks. Nature 365:332–334CrossRefGoogle Scholar
  35. Gerbert-Gaillard L (2002) Caractérisation géochimique des péridotites de l’ophiolite d’Oman: processus magmatiques aux limites lithosphère-asthénosphère, Ph.D. memoir from Géosciences Montpellier, France, 241 pGoogle Scholar
  36. Gerlach DC, Leeman WP, Avé Lallemant HG (1981) Petrology and geochemistry of plagiogranite in the Canyon Mountain ophiolite, Oregon. Contrib Miner Petrol 72:82–92CrossRefGoogle Scholar
  37. Ghazi AM, Hassanipak AA, Mahoney JJ, Duncan RA (2004) Geochemical characteristics, 40Ar-39Ar ages and original tectonic setting of the Band-e-Zeyarat-Dar Anar ophiolite, Makran accretionary prism, S.E. Iran. Tectonophysics 393:175–196CrossRefGoogle Scholar
  38. Gillis KM (2008) The roof of an axial magma chamber: a hornfelsic heat exchanger. Geology 36(4):299–302. doi: 10.1130/G24590A.1 CrossRefGoogle Scholar
  39. Gillis KM, Coogan LA (2002) Anatectic migmatites from the roof of an ocean ridge magma chamber. J Petrol 43:2075–2095CrossRefGoogle Scholar
  40. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134CrossRefGoogle Scholar
  41. Grove TL, Bryan WB (1983) Fractionation of pyroxene-phyric MORB at low pressure: an experimental study. Contrib Miner Petrol 83:293–309. doi: 10.1007/BF01160283 CrossRefGoogle Scholar
  42. Haase KM, Stroncik NA, Hékinian R, Stoffers P (2005) Nb-depleted andesites from the Pacific-Antarctic rise as analogs for early continental crust. Geology 33(12):921–924. doi: 10.1130/G21899.1 CrossRefGoogle Scholar
  43. Hacker BR (1990) Amphibolite-facies to granulite-facies reactions in experimentally deformed, unpowdered amphibolite. Am Miner 75:1349–1361Google Scholar
  44. Hamilton DL, Burnham CW, Osborn EF (1964) The solubility of water and effects of oxygen fugacity and water content on crystallization in mafic magmas. J Petrol 5:21–39Google Scholar
  45. Helz RT (1973) Phase relations of basalt in their melting ranges at PH2O = 5 kb as a function of oxygen fugacity. J Petrol 14:249–302Google Scholar
  46. Holloway JR, Burnham CW (1972) Melting relations of basalt with equilibrium water pressure less than total pressure. J Petrol 13:1–29Google Scholar
  47. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:532–548Google Scholar
  48. Johannes W, Koepke J (2001) Uncomplete reaction of plagioclase in experimental dehydration melting of amphibolite. Aust J Earth Sci 48:581–590CrossRefGoogle Scholar
  49. Juster TC, Grove TL, Perfit MR (1989) Experimental constraints on the generation of FeTi Basalts, Andesites, and Rhyodacites at the Galapagos Spreading Center, 85 W and 95 W. J Geophys Res 94(B7):9251–9274CrossRefGoogle Scholar
  50. Juteau T, Bideau D, Dauteuil O, Manac’h G, Naidoo DD, Nehlig P, Ondreas H, Tivey MA, Whipple KX, Delaney JR (1995) A submersible study in the western blanco fracture zone, N.E. Pacific: structure and evolution during the last 1.6 Ma. Mar Geophys Res 17:399–430CrossRefGoogle Scholar
  51. Kawamoto T (1996) Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett 144:577–589CrossRefGoogle Scholar
  52. Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J Geophys Res 97(B5):6885–6906. doi: 10.1029/91JB02840 CrossRefGoogle Scholar
  53. Klimm K, Holtz F, Johannes W, King PL (2003) Fractionation of metaluminous A-type granites: an experimental study of the Wangrah Suite, Lachlan Fold Belt, Australia. Precambr Res 124:327–341CrossRefGoogle Scholar
  54. Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Miner Petrol 146:414–432CrossRefGoogle Scholar
  55. Koepke J, Feig ST, Snow J (2005a) Hydrous partial melting within the lower oceanic crust. Terra Nova 17:286–291CrossRefGoogle Scholar
  56. Koepke J, Feig ST, Snow J (2005b) Late-stage magmatic evolution of oceanic gabbros as a result of hydrous partial melting: evidence from the ODP Leg 153 drilling at the mid-Atlantic Ridge. Geochem Geophys Geosyst 6:2004GC000805CrossRefGoogle Scholar
  57. Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contrib Miner Petrol 153:67–84. doi: 10.1007/s00410-006-0135-y CrossRefGoogle Scholar
  58. Koepke J, Christie DM, Dziony W, Holtz F, Lattard D, Maclennan J, Park S, Scheibner B, Yamasaki T, Yamazaki S (2008) Petrography of the Dike/Gabbro Transition at IODP Site 1256 (Equatorial Pacific): the evolution of the Granoblastic Dikes. Geochem Geophys Geosyst 9-7:Q07O09. doi: 10.1029/2008GC001939 CrossRefGoogle Scholar
  59. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Miner Petrol 108:82–92CrossRefGoogle Scholar
  60. Liou JG (1971) Synthesis and stability relations of prehnite, Ca2Al2Si3O10(OH)2. Am Miner 56:507–531Google Scholar
  61. Lippard SJ, Shelton AW, Gass IG (1986) The ophiolite of Northern Oman. In: Geological Society Memoir, 11. Blackwell, Oxford, pp 178Google Scholar
  62. Luchitskaya MV, Morozov OL, Palandzhyan SA (2005) Plagiogranite magmatism in the Mesozoic island-arc structure of the Pekulney Ridge, Chukotka Peninsula, NE Russia. Lithos 79:251–269. doi: 10.1016/j.lithos.2004.04.056 CrossRefGoogle Scholar
  63. Lundgaard KL, Tegner C (2004) Partitioning of ferric and ferrous iron between plagioclase and silicate melt. Contrib Miner Petrol 147:470–483CrossRefGoogle Scholar
  64. Malpas J (1979) Two contrasting trondhjemite associations from transported ophiolites in Western Newfoundland: initial report. In: Barker F (ed) Trondhjemites, dacites, and related rocks. Elsevier, Amsterdam, pp 465–487Google Scholar
  65. Manning CE, MacLeod CJ (1996) Fracture-controlled metamorphism of hess deep gabbros, site 894: constraints on the roots of mid-ocean-ridge hydrothermal systems at fast-spreading centers. In: Mével C, Gillis KM, Allan JF, Meyer PS (eds) Proceedings of the Ocean Drilling Program, Scientific Results, vol 147, pp 189–212Google Scholar
  66. Ménot RP (1987) Magmatismes paléozoïques et structuration carbonifère du massif de Belledonne, Alpes françaises. Contraintes nouvelles pour les schémas d’évolution de la chaîne varisque ouest-européenne. Ph.D. dissertation, University Lyon 1, FranceGoogle Scholar
  67. Mével C (1988) Metamorphism in ocean layer 3, Gorringe Bank, Eastern Atlantic. Contrib Miner Petrol 100:496–509CrossRefGoogle Scholar
  68. Michael PJ, Schilling J-G (1989) Chlorine in mid-ocean ridge magmas: evidence for assimilation of seawater-influenced components. Geochim Cosmochim Acta 53:3131–3143CrossRefGoogle Scholar
  69. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355CrossRefGoogle Scholar
  70. Miyashita S, Adachi Y, Umino S (2003) Along-axis magmatic system in the northern Oman ophiolite: implications of compositional variation of the sheeted dike complex. Geochem Geophys Geosyst 4–9:8617. doi: 10.1029/2001GC000235 CrossRefGoogle Scholar
  71. Nicolas A, Boudier F, Ildefonse B, Ball E (2000) Accretion of Oman and United Arab Emirates ophiolite: discussion of a new structural map. Mar Geophys Res 21:147–179. doi: 10.1023/A:1026769727917 CrossRefGoogle Scholar
  72. Nicolas A, Boudier F, Koepke J, France L, Ildefonse B, Mevel C (2008) Root zone of the sheeted dike complex in the Oman ophiolite. Geochem Geophys Geosyst 9:Q05001. doi: 10.1029/2007GC001918 CrossRefGoogle Scholar
  73. Nicolas A, Boudier F, France L (2009) Subsidence in magma chamber and the development of magmatic foliation in Oman ophiolite gabbros. Earth Planet Sci Lett 284:76–87. doi: 10.1016/j.epsl.2009.04.012 CrossRefGoogle Scholar
  74. Niu Y, Gilmore T, Mackie S, Greig A, Bach W (2002) Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. In: Natland JH, Dick HJB, Miller DJ, Von Herzen RP (eds) Proceedings of ODP, Scientific Results 176. Ocean Drilling Program, College Station, TX, pp 1–60, [Online] (Cited Aug 23, 2003)
  75. Pallister JS, Hopson CA (1981) Samail Ophiolite Plutonic Suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. J Geophys Res 86(B4):2593–2644CrossRefGoogle Scholar
  76. Pallister JS, Knight RJ (1981) Rare-earth element geochemistry of the Samail Ophiolite near Ibra, Oman. J Geophys Res 86(B4):2673–2697CrossRefGoogle Scholar
  77. Patino Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707–738Google Scholar
  78. Pedersen RB, Malpas J (1984) The origin of oceanic plagiogranites from the Karmoy ophiolite, Western Norway. Contrib Miner Petrol 88:36–52CrossRefGoogle Scholar
  79. Philpotts AR (1982) Compositions of immiscible liquids in volcanic rocks. Contrib Miner Petrol 80:201–218CrossRefGoogle Scholar
  80. Pollock ME, Klein EM, Karson JA, Coleman DS (2009) Compositions of dikes and lavas from the Pito Deep Rift: implications for crustal accretion at superfast spreading centers. J Geophys Res 114:B03207. doi: 10.1029/2007JB005436 CrossRefGoogle Scholar
  81. Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model ‘‘PAP’’. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantification. Plenum Press, New York, pp 31–75Google Scholar
  82. Prouteau G, Scaillet B, Pichavant M, Maury RC (1999) Fluid-present melting of ocean crust in subduction zones. Geology 27(12):1111–1114CrossRefGoogle Scholar
  83. Rao DR, Rai H, Kumar JS (2004) Origin of oceanic plagiogranite in the Nidar ophiolitic sequence of eastern Ladakh, India. Curr Sci 87(7):999–1005Google Scholar
  84. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crustmantle recycling. J Petrol 36:891–931Google Scholar
  85. Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambr Res 51:1–25CrossRefGoogle Scholar
  86. Rochette P, Jenatton L, Dupuy C, Boudier F, Reuber I (1991) Diabase dikes emplacement in the Oman ophiolite: a magnetic fabric study with reference to geochemistry. In: Peters T, Nicolas A, Coleman RG (eds) Ophiolite genesis and evolution of the oceanic lithosphere. Kluwer, Dordrecht, pp 39–54Google Scholar
  87. Roeder PL, Emslie RF (1970) Olivine–liquid equilibrium. Contrib Miner Petrol 29:275–289CrossRefGoogle Scholar
  88. Rollinson H (2009) New models for the genesis of plagiogranites in the Oman Ophiolite. Lithos 112:603–614. doi:  10.1016/j.lithos.2009.06.006 Google Scholar
  89. Ross K, Elthon D (1993) Cumulates for strongly depleted mid-ocean-ridge basalt. Nature 365(6449):826–829CrossRefGoogle Scholar
  90. Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Miner Petrol 107:41–59CrossRefGoogle Scholar
  91. Rushmer T (1993) Experimental high-pressure granulites: some applications to natural mafic xenolith suites and Archean granulite terranes. Geology 21:411–414CrossRefGoogle Scholar
  92. Sato H (1978) Segregation vesicles and immiscible liquid droplets in ocean-floor basalt of Hole 396B, IPOD/DSDP Leg 46. In: Dimitriev L, Heirtzler J et al (eds) Initial reports of the deep sea drilling project, vol 46. U.S. Government Printing Office, Washington, pp 283–291Google Scholar
  93. Sauerzapf U, Lattard D, Burchard M, Engelmann R (2008) The titanomagnetite-ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. J Petrol 49(6):1161–1185. doi:  10.1093/petrology/egn021 Google Scholar
  94. Scaillet B, Pichavant M, Roux J, Humbert G, Lefèvre A (1992) Improvements of the Shaw membrane technique for measurement and control of fH2 at high temperatures and pressures. Am Miner 77:647–655Google Scholar
  95. Selbekk RS, Furnes H, Pedersen RB, Skjerlie KP (1998) Contrasting tonalite genesis in the Lyngen magmatic complex, north Norwegian Caledonides. Lithos 42:243–268CrossRefGoogle Scholar
  96. Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Miner Petrol 117:394–409CrossRefGoogle Scholar
  97. Shastry A, Srivastava RK, Chandra R, Jenner GA (2001) Fe-Ti enriched mafic rocks from South Andaman ophioite suite: implications of late stage liquid immiscibility. Curr Sci 80:453–454Google Scholar
  98. Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res 97:197–216. doi: 10.1029/91JB02508 Google Scholar
  99. Snyder D, Carmichael ISE, Wiebe RA (1993) Experimental study of liquid evolution in an Fe-rich, layered mafic intrusion: constraints of Fe-Ti oxide precipitation on the T-fO2 and T-ρ paths of tholeiitic magmas. Contrib Miner Petrol 113:73–86. doi: 10.1007/BF00320832 CrossRefGoogle Scholar
  100. Spray JG, Dunning GR (1991) A U/Pb age for the Shetland Islands oceanic fragment, Scottish Caledonides: evidence from anatectic plagiogranites in ‘layer 3’ shear zones. Geol Mag 128:667–671CrossRefGoogle Scholar
  101. Stakes DS, Taylor HP (2003) Magmatic, metamorphic and tectonic processes in ophiolite genesis: oxygen isotope and chemical studies on the origin of large plagiogranite bodies in northern Oman, and their relationship to the overlying massive sulphide deposits. Geol Soc Lond Spec Publ 218:315–351. doi: 10.1144/GSL.SP.2003.218.01.17 CrossRefGoogle Scholar
  102. Teagle DAH, Alt JC, Umino S, Miyashita S, Banerjee NR, Wilson DS, and the Expedition 309/312 Scientists (2006) Superfast spreading rate crust 2 and 3. Proceedings of Integrated Ocean Drill Program 309/312. doi: 10.2204/iodp.proc.309312.2006
  103. Thy P, Lesher CE, Mayfield JD (1999) Low-pressure melting studies of basalt and basaltic andesite from the southeast Greenland continental margin and the origin of dacites at site 917. In: Larsen HC, Duncan RA, Allan JF, Brooks K (eds) Proceedings of the ODP, science research, vol 163. Ocean Drilling Program, College Station, pp 95–112Google Scholar
  104. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Miner Petrol 149:22–39CrossRefGoogle Scholar
  105. Toplis MJ, Carrol MR (1995) An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral–melt equilibria in ferro-basaltic systems. J Petrol 36–5:1137–1170Google Scholar
  106. Toplis MJ, Libourel G, Carroll MR (1994) The role of phosphorus in crystallisation processes of basalt: an experimental study. Geochim Cosmochim Acta 58(2):797–810. doi: 10.1016/0016-7037(94)90506-1 CrossRefGoogle Scholar
  107. Twinning K (1996) Origin of plagiogranites in the Troodos ophiolite, Cyprus. The Ninth Keck Research Symposium in Geology, pp 245–248Google Scholar
  108. Ulrich T, Borsien G-R (1996) Fedoz metagabbros and Forno metabasalt (Val Malenco, N Italy): comparative petrographic and geochemical investigations. Schweiz Miner Petrogr Mitt 76:521–535Google Scholar
  109. Umino S, Miyashita S, Hotta F, Adachi Y (2003) Along-strike variation of the sheeted dike complex in the Oman Ophiolite: insights into subaxial ridge segment structures and the magma plumbing system. Geochem Geophys Geosyst 4–9:8618. doi: 10.1029/2001GC000233 CrossRefGoogle Scholar
  110. Veksler IV, Dorfman AM, Borisov AA, Wirth R, Dingwell DB (2007) Liquid immiscibility and the evolution of basaltic magma. J Petrol 48(11):2187–2210. doi: 10.1093/petrology/emg056 Google Scholar
  111. Wilson DS et al (2006) Drilling to gabbro in intact ocean crust. Science 312:1016–1020CrossRefGoogle Scholar
  112. Wolf MB, Wyllie PJ (1994) Dehydration-melting of amphibolite at 10 kbar: the effects of temperature and time. Contrib Miner Petrol 115:369–383CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Lydéric France
    • 1
    • 2
    • 4
    Email author
  • Juergen Koepke
    • 2
  • Benoit Ildefonse
    • 1
  • Sarah B. Cichy
    • 2
  • Fabien Deschamps
    • 3
  1. 1.Géosciences MontpellierCNRS, Université Montpellier 2Montpellier Cedex 05France
  2. 2.Institut für MineralogieLeibniz Universität HannoverHannoverGermany
  3. 3.LGCA UMR CNRS 5025Université Joseph-FourierGrenoble cedexFrance
  4. 4.Géosciences et Environnement CergyUniversité Cergy-PontoiseCergy-Pontoise cedexFrance

Personalised recommendations