Contributions to Mineralogy and Petrology

, Volume 160, Issue 4, pp 489–510 | Cite as

Mineral inclusions in sublithospheric diamonds from Collier 4 kimberlite pipe, Juina, Brazil: subducted protoliths, carbonated melts and primary kimberlite magmatism

  • Galina P. BulanovaEmail author
  • Michael J. Walter
  • Chris B. Smith
  • Simon C. Kohn
  • Lora S. Armstrong
  • Jon Blundy
  • Luiz Gobbo
Original Paper


We report on a suite of diamonds from the Cretaceous Collier 4 kimberlite pipe, Juina, Brazil, that are predominantly nitrogen-free type II crystals showing complex internal growth structures. Syngenetic mineral inclusions comprise calcium- and titanium-rich phases with perovskite stoichiometry, Ca-rich majoritic-garnet, clinopyroxene, olivine, TAPP phase, minerals with stoichiometries of CAS and K-hollandite phases, SiO2, FeO, native iron, low-Ni sulfides, and Ca–Mg-carbonate. We divide the diamonds into three groups on the basis of the carbon isotope compositions (δ13C) of diamond core zones. Group 1 diamonds have heavy, mantle-like δ13C (−5 to −10‰) with mineral inclusions indicating a transition zone origin from mafic protoliths. Group 2 diamonds have intermediate δ13C (−12 to −15‰), with inclusion compositions indicating crystallization from near-primary and differentiated carbonated melts derived from oceanic crust in the deep upper mantle or transition zone. A 206Pb/238U age of 101 ± 7 Ma on a CaTiSi-perovskite inclusion (Group 2) is close to the kimberlite emplacement time (93.1 ± 1.5 Ma). Group 3 diamonds have extremely light δ13C (−25‰), and host inclusions have compositions akin to high-pressure–temperature phases expected to be stable in pelagic sediments subducted to transition zone depths. Collectively, the Collier 4 diamonds and their inclusions indicate multi-stage, polybaric growth histories in dynamically changing chemical environments. The young inclusion age, the ubiquitous chemical and isotopic characteristics indicative of subducted materials, and the regional tectonic history, suggest a model in which generation of sublithospheric diamonds and their inclusions, and the proto-kimberlite magmas, are related genetically, temporally and geographically to the interaction of subducted lithosphere and a Cretaceous plume.


Brazil Collier 4 kimberlite Sublithospheric diamonds Inclusions Carbon isotopes Subduction Carbonatite melt 



Rio Tinto Desinvolvimentos Minerais Ltd. is thanked for access to Juina diamond samples and for permission to publish. Special thanks to R. Hinton and J. Craven at the Edinburgh Ion Microprobe Facility (EIMF) for their helpfulness and expertise in data acquisition. Thanks to D. Canil, T. Stachel and M. Schmidt for thoughtful reviews that improved the manuscript. This work was supported by NERC grant NE/E010466/1 to M.J. Walter.


  1. Akaogi M, Akimoto S (1979) High pressure phase equilibria in a garnet lherzolite, with special reference to Mg2+–Fe2+ partitioning among constituent minerals. Phys Earth Planet Int 19:31–51CrossRefGoogle Scholar
  2. Andreazza P, Kaminsky FV, Sablukov SM, Belousova EA, Tremblay M, Griffin WL (2008) Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil. In: 9th international Kimberlite conference, Frankfurt, Germany. Extended Abstract No. 9IKC-A-00004Google Scholar
  3. Araujo DP, Gaspar JC, Fei Y, Hauri EH, Hemley R, Bulanova GP (2003) Mineralogy of diamonds from the Juina province, Brazil. Extended abstracts. VIIIth International Kimberlite Conference, Victoria, CanadaGoogle Scholar
  4. Aulbach S, Stachel T, Viljoen KS, Brey GP, Harris JW (2002) Eclogitic and websteritic diamond sources beneath the Limpopo Belt—is slab-melting the link? Contrib Mineral Petrol 143:56–70Google Scholar
  5. Auzanneau E, Vielzeuf D, Schmidt M (2006) Experimental evidence of decompression melting during exhumation of subducted continental crust. Cont Mineral Petrol 152:125–148CrossRefGoogle Scholar
  6. Ballhaus C, Berry RF, Green DH (1990) Oxygen fugacity controls in the Earth’s upper mantle. Nature 348:437–440CrossRefGoogle Scholar
  7. Bardet MG (1977) Geologie du diamant. Troisieme parte, gisements de diamants d’Asia, d’Amerique, d’Europe et d’Australasie. BRGM, Memoire 83:169Google Scholar
  8. Brenker F, Stachel T, Harris JW (2002) Exhumation of lower mantle inclusions in diamonds: a TEM investigation of retrograde phase transitions, reactions and exsolution. Earth Planet Sci Lett 198:1–9CrossRefGoogle Scholar
  9. Brenker FE, Vincze L, Vekemans B, Nasdala L, Stachel T, Vollmer C, Kersten M, Somogyif A, Adams F, Joswig W, Harris JW (2005) Detection of a Ca-rich lithology in the Earth’s deep (300 km) convecting mantle. Earth Planet Sci Lett 236:579–587CrossRefGoogle Scholar
  10. Brenker FE, Vollmer C, Vincze L, Vekermans B, Szymansky A, Janssen I, Nasdala L, Joswig W, Kaminsky FV (2007) Carbonates from the lower part of transition zone or even the lower mantle. Earth Planet Sci Lett 260:1–9CrossRefGoogle Scholar
  11. Brey GP, Bulatov V, Girnis A, Harris JW, Stachel T (2004) Ferropericlase—a lower mantle phase in the upper mantle. 8th International Kimberlite Conference selected papers 2:647–663Google Scholar
  12. Bulanova G (1995) The formation of diamond. J Geochem Explor 53:1–23CrossRefGoogle Scholar
  13. Bulanova G, Smith C, Walter M, Blundy J, Gobbo L, EIMF, Kohn SC (2008) Proto-kimberlitic ultradeep diamonds from Collier-4 kimberlite pipe, Juina, Brazil. In: 9th international Kimberlite conference, Frankfurt, Germany, Extended Abstract No. 9IKC-A-00227Google Scholar
  14. Cartigny P (2005) Stable isotopes and the origin of diamond. Elements (1):79–84Google Scholar
  15. Cartigny P, Harris JW, Javoy M (1998a) Eclogitic diamond formation at Jwaneng: no room for recycled component. Science 280:1421–1424CrossRefGoogle Scholar
  16. Cartigny P, Harris JW, Phillips D, Girard M, Javoy M (1998b) Subduction-related diamonds? The evidence for a mantle derived origin from coupled δ13 C–δ 15 N determinations. Chem Geol 147:147–159CrossRefGoogle Scholar
  17. Cartigny P, Harris JW, Javoy M (2001) Diamond genesis, mantle fractionations and mantle nitrogen content: a study of δ13C-N concentrations in diamonds. Earth Planet Sci Lett 185:85–98CrossRefGoogle Scholar
  18. Cawood PA (2005) Terra Australis Orogen: Rodinia breakup and devlopment of the Pacific and Iapetus margins of Gondwana during the Neoproterozoic and Paleozoic. Earth Sci Rev 69:249–279CrossRefGoogle Scholar
  19. Corgne A, Wood BJ (2002) CaSiO3 and CaTiO3 perovskite-melt partitioning of trace elements: Implications for gross mantle differentiation. Geophys Res Lett 29Google Scholar
  20. Costa VS, Gaspar JC, Pimentel MM (2003) Peridotite and Eclogite Xenoliths from the Juina Kimberlite Province, Brazil. Long Abstracts, 8th International. Kimberlite Conference, Vancouver FLA_0336Google Scholar
  21. Dalton JA, Presnall DC (1998) The continuum of primary carbonatitic–kimberlitic melt compositions in equilibrium with lherzolite: data from the system CaO–MgO–Al2O3–SiO2–CO2 at 6 GPa. J Petrol 39:1955–1964CrossRefGoogle Scholar
  22. Dasgupta R, Hirschmann MM, Withers AC (2006) Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet Sci Lett 227:73–85CrossRefGoogle Scholar
  23. de Almeida FFM, de Brito Neves BB, Carneiro CR (2000) The origin and evolution of the South American Platform. Earth Sci Rev, pp 77–111Google Scholar
  24. Deines P (1980) The carbon isotopic composition of diamonds: relationship to diamond shape, color, occurrences and vapour composition. Geochim Cosmochim Acta 44:943–961CrossRefGoogle Scholar
  25. Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth Sci Rev 58:247–278CrossRefGoogle Scholar
  26. Deines P, Harris JW (1995) Sulfide inclusion chemistry and carbon isotopes of African diamonds. Geochim Cosmochim Acta 59:3173–3188CrossRefGoogle Scholar
  27. Deines P, Viljoen F, Harris JW (2001) Implications of the carbon isotope and mineral inclusion record for the formation of diamonds in the mantle underlying a mobile belt: Venetia, South Africa. Geochim Cosmochim Acta 65:813–838CrossRefGoogle Scholar
  28. Falloon TJ, Green DH (1990) Solidus of carbonated fertile peridotite under fluid-saturated conditions. Geology 18:195–199CrossRefGoogle Scholar
  29. Feng M, van der Lee S, Assumpcao M (2007) Upper mantle structure of South America from joint inversion of waveforms and fundamental mode group velocities of Rayleigh waves. J Geophys Res 112Google Scholar
  30. Finger LW, Conrad PG (2000) The crystal structure of “tetragonal almandine-pyrope phase” (TAPP): a reexamination. Am Mineral 85:1804–1807Google Scholar
  31. Fitzsimons ICW, Harte B, Chinn JJ, Gurney JJ, Taylor WR (1999) Extreme chemical variation in complex diamonds from George Creek, Colorado: a SIMS study of carbon isotope composition and nitrogen abundance. Mineral Mag 63(6):857–878CrossRefGoogle Scholar
  32. Frank FC (1969) Diamonds and deep fluids in the upper mantle. In: Runcorn SK (ed) The application of modern physics to the earth and planetary interiors. Wiley, New York, pp 247–250Google Scholar
  33. Frost DJ, McCammon CA (2008) The redox state of Earth’s mantle. Annu Rev Earth Planet Sci 36:389–420CrossRefGoogle Scholar
  34. Ganguly J, Freed AM, Saxena SK (2009) Density profiles of oceanic slabs and surrounding mantle: integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660 km discontinuity. Phys Earth Planet Int 172:257–267CrossRefGoogle Scholar
  35. Gaspar JC, Teixeira NA, Steele IM (1998) Cathodoluminescence of Juina diamonds. In: Extended abstracts 7th international Kimberlite conference, Cape Town, pp 242–244Google Scholar
  36. Geraldes MC, Teixeira W, Heilbron M (2004) Lithospheric versus asthenospheric source of the SW Amazonian craton A-types granites: the role of the Paleo- and Mesoproterozoic accretionary belts for their coeval continental suites. Episodes 27(3):185–189Google Scholar
  37. Gibson SA, Thompson RN, Leonardos OH, Dickin AP, Mitchell GJ (1995) The Late Cretaceous impact of the Trindade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. J Petrol 36(1):89–229Google Scholar
  38. Gibson SA, Thompson RN, Leonardos OH, Dickin AP, Mitchell GJ (1999) The limited extent of plume-lithosphere interactions during continental flood-basalt genesis: geochemical evidence from Cretaceous magmatism in southern Brazil. Contrib Mineral Petrol 137:147–169CrossRefGoogle Scholar
  39. Goes S, Capitanio FA, Morra G (2008) Evidence of lower-mantle slab penetration phases in plate motion. Nature 451:981–984CrossRefGoogle Scholar
  40. Grigor’yev AG, Jabin AG (1975) Ontogeniya of minerals. Nauka, Moskva, pp 1–339Google Scholar
  41. Gudfinnsson G, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46:1645–1659CrossRefGoogle Scholar
  42. Gunn SC, Luth RW (2006) Carbonate reduction by Fe-S-O melts at high pressure and high temperature. Am Mineral 91(7):1110–1116CrossRefGoogle Scholar
  43. Haggerty SE (1999) A diamond trilogy: superplumes, supercontinents, and supernovae. Science 285:851–860CrossRefGoogle Scholar
  44. Harris JW, Hutchison MT, Hursthouse M, Light M, Harte B (1997) A new tetragonal silicate mineral occurring as inclusions in lower mantle diamonds. Nature 387:486–488CrossRefGoogle Scholar
  45. Harte B, Cayzer N (2007) Decompression and unmixing of crystals included in diamonds from the mantle transition zone. Phys Chem MineralGoogle Scholar
  46. Harte B, Harris JH (1994) Lower mantle mineral associations preserved in diamonds. Mineral Mag 58A:384–385CrossRefGoogle Scholar
  47. Harte B, Harris JW, Hutchison MT, Watt GR, Wilding MC (1999) Lower mantle mineral assotiations in diamonds from Sao Luiz, Brazil. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation. Geochemical Society Special Publications, pp 125–153Google Scholar
  48. Hayman PC, Kopylova MG, Kaminsky FV (2005) Lower mantle diamonds from Rio Soriso (Juina area, Mato Grosso, Brazil). Contrib Mineral Petrol 140:734–753Google Scholar
  49. Heaman L, Teixeira NA, Gobbo L, Gaspar JC (1998) U–Pb mantle zircon ages for kimberlites from the Juina and Paranatinga Provinces, Brazil. In: Extended Abstracts, 7th international kimberlite conference, Cape Town, pp 322–324Google Scholar
  50. Heit B, Sodoudi F, Yuan X, Bianchi M, Kind R (2007) An S receiver function analysis of the lithospheric structure in South America. Geophys Res Lett 34, L14307. doi: 10.1029/2007GL030317
  51. Hermann J, Rubatto D (2009) Accessory phase control on the trace element signature of sediment melts in subduction zones. Chem Geol 265:512–526CrossRefGoogle Scholar
  52. Hirose K, Fei Y, Ma Y, Mao H-K (1999) The fate of subducted basaltic crust in the Earth’s lower mantle. Nature 397:53–56CrossRefGoogle Scholar
  53. Hirose K, Shimizu N, Wv Westrenen, Fei Y (2004) Trace element partitioning in Earth’s lower mantle and implications for geochemical consequences of partial melting at the core–mantle boundary. Phys Earth Planet Int 146:249–260CrossRefGoogle Scholar
  54. Hirschmann MM (2006) Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653CrossRefGoogle Scholar
  55. Hutchison MT (1997) Constitution of the deep transition zone and lower mantle shown by diamonds and their inclusions, vol 1, 2. Unpublished Ph.D. thesis, University of Edinburgh, pp 1–646Google Scholar
  56. Hutchison MT, Cartigny P, Harris JW (1999) Carbon and nitrogen compositions and physical characteristics and physical characteristics of transition zone and lower mantle diamonds from Sao Luiz, Brazil. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) VIIth international Kimberlite conference. The JB Dawson Volume. Red Roof Design, Cape Town, pp 372–382Google Scholar
  57. Hutchison MT, Hursthouse MB, Light ME (2001) Mineral inclusions in diamonds: associations and chemical distinctions around the 670-km discontinuity. Contrib Mineral Petrol 142:119–126CrossRefGoogle Scholar
  58. Irifune T, Ringwood AE, Hibberson WO (1994) Subduction of continental crust and terrigenous and pelagic sediments: an experimental study. Earth Planet Sci Lett 126:351–368CrossRefGoogle Scholar
  59. Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62CrossRefGoogle Scholar
  60. Kaminsky FV, Zakharchenko OD, Davies R, Griffin WL, Khachatryan-Blinova GK, Shiryaev AA (2001) Superdeep diamonds from the Juina area, Mato Grosso State. Brazil Contrib Mineral Petrol 140:734–753CrossRefGoogle Scholar
  61. Kaminsky FV, Khachatryan GK, Andreazza P, Araujo DP, Griffin WL (2009) Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos 112(2):833–842CrossRefGoogle Scholar
  62. Keppler H (2003) Water solubility in carbonatite melts. Am Mineral 88:1822–1824Google Scholar
  63. Keshav S, Gudfinnsson G, Presnall D (2006) Majoritic-garnets and clinopyroxenes in cratonic diamonds: precipitates from CO2-rich melts. 11th EMPG Abstracts, p 36Google Scholar
  64. Kirkley MB, Gurney JJ, Otter ML, Hill SJ, Daniels LRM (1991) The application of C isotope measurements to the identification of the sources of C in diamonds, a review. Appl Geochem 6:477–494CrossRefGoogle Scholar
  65. Lay T (1994) The fate of subducting slabs. Ann Rev Earth Planet Sci 22:33–61CrossRefGoogle Scholar
  66. Luth RW (1993) Diamonds, eclogites, and the oxidation state of the Earth’s mantle. Science 261:66–68CrossRefGoogle Scholar
  67. Luth RW (1996) Experimental study of the CaMgSi2O6–CO2 system at 3 to 8 GPa. Cont Mineral Petrol 151:141–157CrossRefGoogle Scholar
  68. Luth RW (1999) Carbon and carbonates in the mantle. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high-pressure experimentation, Special Publication No. 6. The Geochemical Society, Houston, pp 297–316Google Scholar
  69. Maruoka T, Kurat G, Dobosi G, Koeberl C (2004) Isotopic composition of carbon in diamonds of diamondites: record of mass fractionation in the upper mantle Geochim. Cosmochim Acta 68:1635–1644CrossRefGoogle Scholar
  70. McDonough WF, Sun S-S (1995) The composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  71. Mohapatra RK, Honda M (2006) Recycled volatiles in mantle derived diamonds—evidence from nitrogen and noble gas isotopic data. Earth Planet Sci Lett 252:215–219CrossRefGoogle Scholar
  72. Moore RO, Gurney JJ, Griffin WL, Shimizu N (1991) Ultra-high pressure garnet inclusions in Monastery diamonds—trace element abundance patterns and conditions of origin. Eur J Mineral 3:213–230Google Scholar
  73. Mysen BO, Fogel ML, Morrill PL, Cody GD (2009) Solution behavior of reduced C-O-H volatiles in silicate melts at high pressure and temperature. Geochim Cosmochim Acta 73:1696–1710CrossRefGoogle Scholar
  74. Nelson DR, Chivas AR, Chappell BW, McCulloch MT (1988) Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochim Cosmochim Acta 52:1–17CrossRefGoogle Scholar
  75. Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part 1. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx themometer. Cont Mineral Petrol 139:541–554CrossRefGoogle Scholar
  76. Pal’yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV (1999) Diamond formation from mantle carbonate fluids. Nature 400:417–418CrossRefGoogle Scholar
  77. Pal’yanov YN, Sokol AG, Tomilenko AA, Sobolev NV (2005) Conditions of diamond formation through carbonate–silicate interaction. Eur J Mineral 17:207–214CrossRefGoogle Scholar
  78. Peacock SM (2003) Thermal structure and metamorphic evolution of subducting slabs. In: Eiler J (ed) Inside the Subduction Factory, Geophysical Monograph 138. American Geophysical Union, Washington DC, pp 7–22Google Scholar
  79. Pearson DG, Shirey SB, Bulanova GP, Carlson RW, Milledge HJ (1999) Re-Os isotope measurements of single sulphide inclusions in a Siberian diamond and its nitrogen aggregation systematic. Geochim Cosmochim Acta 63(5):703–711CrossRefGoogle Scholar
  80. Poli S, Schmidt M (2002) Petrology of subducted slabs. Annu Rev Earth Sci 30:207–235CrossRefGoogle Scholar
  81. Poli S, Franzolin E, Fumagalli P, Crottini A (2009) The transport of carbon and hydrogen in subducted oceanic crust: An experimental study to 5 GPa. Earth Planet Sci Lett 278:350–360CrossRefGoogle Scholar
  82. Ramsay RR (1992) Geochemistry of diamond indicator minerals. In: PhD University of Western Australia, p 1101Google Scholar
  83. Richardson SH, Gurney JJ, Erlank AJ, Harris JW (1984) Origin of diamonds in old enriched mantle. Nature 310:198–202CrossRefGoogle Scholar
  84. Ringwood AE (1991) Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochim Acta 55:2083–2110CrossRefGoogle Scholar
  85. Rohrbach A, Ballhaus C, Golla-Schindler U, Ulmer P, Kamenetsky VS, Kuzmin DV (2007) Metal saturation in the upper mantle. Nature 449:456–458CrossRefGoogle Scholar
  86. Rudnick RL, Eldridge CS, Bulanova GP (1993) Diamond growth history from in situ measurements of Pb and S isotopic compositions of sulphide inclusions. Geology 21:13–16CrossRefGoogle Scholar
  87. Schidlowski M (1988) A 3,800-million-year isotopic record of life from carbon in sedimentary rocks. Nature 333:313–318CrossRefGoogle Scholar
  88. Schulze DJ, Harte B, Valley JW, Channer DM (2004) Evidence of subduction and crust-mantle mixing from a single diamond. Lithos 77:349–358CrossRefGoogle Scholar
  89. Shearer PM, Masters TG (1992) Global mapping of topography on the 660-km discontinuity. Nature 355:791–796CrossRefGoogle Scholar
  90. Spetsius ZV, Serenko VP (1990) Composition of continental upper mantle and lower crust beneath the Siberian platform. Moscow, Nauka, pp 1–271Google Scholar
  91. Stachel T, Brey GP, Harris JW (2000) Kankan diamond, (Guinea) I: From the lithosphere down to the transition zone. Contrib Mineral Petrol 140:1–15CrossRefGoogle Scholar
  92. Stachel T, Brey GP, Harris JW (2001) Diamonds from the asthenosphere and the transition zone. Eur J Mineral 13:883–992Google Scholar
  93. Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–19Google Scholar
  94. Stachel T, Brey GP, Harris JW (2005) Inclusions in sublithospheric diamonds: glimpses of the deep Earth. Elements 1:73–78CrossRefGoogle Scholar
  95. Sunagawa I (1984) Morphology of natural and synthetic diamond crystals. In: Materials science of the Earth’s interior. Terrapub, Tokyo, pp 303–330Google Scholar
  96. Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP (2005a) Diamonds from Jagersfontein (South Africa): messengers from the sublithospheric mantle. Contrib Mineral Petrol 150:505–522CrossRefGoogle Scholar
  97. Tappert R, Stachel T, Harris JW, Muehlenbachs K, Ludwig T, Brey GP (2005b) Subducting oceanic crust: the source of deep diamonds. Geology 33:565–568CrossRefGoogle Scholar
  98. Tappert R, Foden J, Stachel T, Muehlenbachs K, Tappert M, Wills K (2009) Deep mantle diamonds from South Australia: a record of Pacific subduction at the Gondwanan margin. Geology 37:43–46CrossRefGoogle Scholar
  99. Taran MN, Kvasnitsa VM, Langer K, Ilchenko KO (2006) Infrared spectroscopy study of nitrogen centers in microdiamonds from Ukrainian Neogene placers. Eur J Mineral 18:71–81CrossRefGoogle Scholar
  100. Taylor WR, Jaques AL, Ridd M (1990) Nitorgen-defect aggregation characteristics of some Australasian diamonds: time-temperature constraints on the source regions of pipe and alluvial diamonds. Am Mineral 75:1290–1310Google Scholar
  101. Thomassot E, Cartigny P, Harris JW, Viljoen KS (2007) Methane-related diamond crystallization in the Earth’s mantle: stable isotope evidences from a single diamond-bearing xenolith. Earth Planet Sci Lett 257:362–371CrossRefGoogle Scholar
  102. Tompkins LA (1991) Kimberlite structural environments and diamonds in Brazil. In: Extended Abstracts, 5th international Kimberlite conference, CPRM Special Publication, vol 2, suppl 91, pp 426–428Google Scholar
  103. VanDecar JC, James DE, Assumpcao M (1995) Seismic evidence for a fossil mantle plume beneath South America and implications for plate driving forces. Nature 378:25–31CrossRefGoogle Scholar
  104. Walter M, Bulanova G, Armstrong L, Keshav S, Blundy JD, Gudfinnsson G, Lord O, Lennie A, Smith C, Gobbo L (2008) Primary carbonatite melt from deeply subducted oceanic crust. Nature 454:622–625Google Scholar
  105. Wang W, Gasparik T, Rapp R (2000) Partitioning of rare earth elements between CaSiO3 perovskite and coexisting phases: constraints on the formation of CaSiO3 inclusions in diamonds. Earth Planet Sci Lett 181:291–300CrossRefGoogle Scholar
  106. Wilding MC (1990) A study of diamonds with syngenetic inclusions. Unpublished PhD Thesis. University of Edinburgh, UK, pp 1–281Google Scholar
  107. Woodland AB, Koch M (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, Southern Africa. Earth Planet Sci Lett 214:295–310CrossRefGoogle Scholar
  108. Yamaoka S, Kumar MDS, Kanda H, Akaishi M (2002) Formation of diamond from CaCO in a reduced C–O–H fluid at HP–HT. Diam Relat Mater 11:1496–1504CrossRefGoogle Scholar
  109. Yaxley GM, Brey GP (2004) Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites. Cont Mineral Petrol 146:606–619CrossRefGoogle Scholar
  110. Yaxley GM, Green DH (1994) Experimental demonstration of refractory carbonate-bearing eclogite and siliceous melt in the subduction regime. Earth Planet Sci Lett 128:313–325CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Galina P. Bulanova
    • 1
    Email author
  • Michael J. Walter
    • 1
  • Chris B. Smith
    • 1
  • Simon C. Kohn
    • 1
  • Lora S. Armstrong
    • 1
  • Jon Blundy
    • 1
  • Luiz Gobbo
    • 2
  1. 1.Department of Earth SciencesUniversity of BristolBristolUK
  2. 2.Rio Tinto Desenvolvimentos Minerais LtdaBrasíliaBrazil

Personalised recommendations