Advertisement

Contributions to Mineralogy and Petrology

, Volume 160, Issue 2, pp 297–312 | Cite as

Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes

  • Pierre SchianoEmail author
  • M. Monzier
  • J.-P. Eissen
  • H. Martin
  • K. T. Koga
Original Paper

Abstract

Examination of an extensive major and trace element database for about 700 whole rocks from the Ecuadorian Andes reveals series of local trends typified by three volcanoes: Iliniza and Pichincha from the Western Cordillera and Tungurahua from the Eastern Cordillera. These local trends are included in a more scattered global trend that reflects typical across-arc chemical variations. The scatter of the global trend is attributed to greater crustal contributions or decreasing melt fractions. Trace element modelling shows that the local trends are consistent with mixing, and not with any fractional crystallization or progressive melting dominated processes. These local trends are extendable to include samples from other Ecuadorian volcanoes, suggesting that mixing processes are dominant throughout the region. Mixing model using trace and major element analyses identifies two end-members: low-silica, basaltic and high-silica, dacitic magmas. It also shows that mixing occurred between magmas after their segregation, rather than earlier mixing between the solid sources prior to melting. As a consequence, there must exist efficient magma-mixing processes that can overcome the obstacles to mixing magmas with contrasting physical properties, and can produce series of hybrid liquids over regional-scale. Model calculations show that estimated silicic end-members are primary magmas and are not co-magmatic derivatives of the corresponding mafic end-members. Lavas of Ecuadorian volcanoes are likely originated from magmas of contrasting origins, such as basaltic magmas generated by fluxed melting of peridotites in the mantle wedge and dacitic, adakite-type magmas originating from the slab or the mafic lower crust.

Keywords

Ecuador Magma mixing Arc lavas Adakite 

Notes

Acknowledgments

The authors thank P. Samaniego for critical reading of the manuscript, two anonymous referees for constructive reviews and T. L. Grove for editorial handling.

Supplementary material

410_2009_478_MOESM1_ESM.doc (26 kb)
Supplementary material 1 (DOC 25.5 kb)
410_2009_478_MOESM2_ESM.xls (421 kb)
Supplementary material 2 (XLS 421 kb)

References

  1. Allègre CJ, Minster JF (1978) Quantitative models of trace element behavior in magmatic processes. Earth Planet Sci Lett 38:1–25CrossRefGoogle Scholar
  2. Allègre CJ, Treuil M, Minster JF, Minster B, Albarède F (1977) Systematic use of trace elements in igneous processes Part I: fractional crystallization processes in volcanic suites. Contrib Miner Petrol 60:57–75CrossRefGoogle Scholar
  3. Anderson AT (1976) Magma mixing: petrological process and volcanological tool. J Volcanol Geotherm Res 1:3–33CrossRefGoogle Scholar
  4. Arculus RJ, Lapierre H, Jaillard E (1999) Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology 27:547–550CrossRefGoogle Scholar
  5. Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146CrossRefGoogle Scholar
  6. Barberi F, Coltelli M, Ferrara G, Innocenti F, Navarro JM, Santacroce R (1988) Plio-Quternary volcanism in Ecuador. Geol Mag 125:1–14CrossRefGoogle Scholar
  7. Barragan R, Geist D, Hall ML, Larson P, Kurz M (1998) Subduction controls on the composition of lavas from the Ecuadorian Andes. Earth Planet Sci Lett 154:153–166CrossRefGoogle Scholar
  8. Beard JS, Lofgren GE (1989) Effect of water on the composition of partial melts of greenstones and amphibolites. Science 144:195–197CrossRefGoogle Scholar
  9. Bourdon B, Joron J-L, Claude-Ivanaj C, Allègre CJ (1998) U–Th–Pa–Ra systematics for the Grande Comore volcanics: melting processes in an upwelling plume. Earth Planet Sci Lett 164:119–133CrossRefGoogle Scholar
  10. Bourdon E, Eissen J-P, Monzier M, Robin C, Martin H, Cotten J, Hall ML (2002a) Adakite-like lavas from Antisana volcano (Ecuador): evidence for slab melt metasomatism beneath the Andean Northern Volcanic Zone. J Petrol 43:199–217CrossRefGoogle Scholar
  11. Bourdon E, Eissen J-P, Gutscher M-A, Monzier M, Samaniego P, Robin C, Bollinger C, Cotten J (2002b) Slab melting and slab melt metasomatism in the Northern Andean Volcanic Zone: adakites and high-Mg andesites from Pichincha volcano (Ecuador). Bull Soc Géol Fr 173:195–206CrossRefGoogle Scholar
  12. Bourdon E, Eissen J-P, Gutscher M-A, Monzier M, Hall ML, Cotten J (2003) Magmatic response to early aseismic ridge subduction: The ecuadorian margin case (South America). Earth Planet Sci Lett 205:123–138CrossRefGoogle Scholar
  13. Bryant JA, Yogodzinski GM, Hall ML, Lewicki JL, Bailey DG (2006) Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic zone, Ecuador. J Petrol 47:1147–1175CrossRefGoogle Scholar
  14. Campbell IH, Turner JS (1985) Turbulent mixing between fluids with different viscosities. Nature 313:39–42CrossRefGoogle Scholar
  15. Chiaradia M, Müntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib Miner Petrol 158:563–588CrossRefGoogle Scholar
  16. Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers. Nature 411:1037–1039CrossRefGoogle Scholar
  17. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  18. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  19. Dickinson WR (1975) Potash-depth (K-h) relations in continental margin and intra-oceanic magmatic arcs. Geology 3:53–56CrossRefGoogle Scholar
  20. Eichelberger JC (1975) Origin of andesite and dacite: evidence of mixing at Glass Mountain in California and at other Circum-Pacific volcanoes. Geol Soc Am Bull 86:1381–1391CrossRefGoogle Scholar
  21. Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288:446–450CrossRefGoogle Scholar
  22. Feininger T (1987) Allochthonous terranes in the Andes of Ecuador and northwestern Peru. Can J Earth Sci 24:266–278CrossRefGoogle Scholar
  23. Feininger T, Seguin MK (1983) Bouguer gravity anomaly field and inferred crustal structure of continental Ecuador. Geology 11:40–44CrossRefGoogle Scholar
  24. Fourcade S, Allègre CJ (1981) Trace elements behavior in granite genesis: A case study The calc-alkaline plutonic association from the Querigut complex (Pyrénées, France). Contrib Miner Petrol 76:177–195CrossRefGoogle Scholar
  25. Francis PW, Moorbath S, Thorpe RS (1977) Strontium isotope data for recent andesites in Ecuador and north Chile. Earth Planet Sci Lett 37:197–202CrossRefGoogle Scholar
  26. Garrison JM, Davidson JP (2003) Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 31:565–568CrossRefGoogle Scholar
  27. Gill JB (1981) Orogenic andesites and plate tectonics. Springer, Berlin, 390 ppGoogle Scholar
  28. Gorton MP (1997) The geochemistry and origin of quaternary volcanism in the New Hebrides. Geoch Cosmochim Acta 41:1251–1270Google Scholar
  29. Gourgaud A, Fichaud M, Joron J-L (1989) Magmatology of Mt. Pelée (Martinique, F.W.I.). I: Magma mixing, triggering of the 1902 and 1929 Pelean nuées ardentes. J Volcanol Geotherm Res 38:143–169CrossRefGoogle Scholar
  30. Grove TL, Baker MB (1984) Phase equilibrium controls on the tholeiitic versus calc-alkaline differentiation trends. J Geophys Res 89:3253–3274CrossRefGoogle Scholar
  31. Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145:515–533CrossRefGoogle Scholar
  32. Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148:542–565CrossRefGoogle Scholar
  33. Guillier B, Chatelain J-L, Jaillard E, Yepas H, Poupine G, Fels J-F (2001) Seismological evidence on the geometry of the orogenic system in central-northern Ecuador (South America). Geophys Res Lett 28:3749–3752CrossRefGoogle Scholar
  34. Gutscher M-A, Maury RC, Eissen J-P, Bourdon E (2000) Can slab melting be caused by flat subduction? Geology 28:535–538CrossRefGoogle Scholar
  35. Hall ML, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–23CrossRefGoogle Scholar
  36. Harmon RS, Barreiro BA, Moorbath S, Hoefs J, Francis PW, Thorpe RS, Déruelle B, McHugh J, Viglino JA (1984) Regional O-, Sr-, and Pb-isotope relationships in late Cenozoic calc-alkaline lavas of the Andean Cordillera. J Geol Soc Lond 141:803–822CrossRefGoogle Scholar
  37. Hawkesworth CJ, Norry MJ, Roddick JC, Baker PE, Francis PW, Thorpe RS (1979) 143Nd/144Nd, 87Sr/86Sr, and incompatible element variations in calc-alkaline andesites and plateau lavas from South America. Earth Planet Sci Lett 42:45–87CrossRefGoogle Scholar
  38. Hidalgo S, Monzier M, Martin H, Chazot G, Eissen J-P, Cotten J (2007) Adakitic magmas in the Ecuadorian Volcanic front: Petrogenesis of the Iliniza Volcanic Complex (Ecuador). J Volcanol Geotherm Res 159:366–392CrossRefGoogle Scholar
  39. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Miner Petrol 98:455–489CrossRefGoogle Scholar
  40. Hofmann AW, Feigenson MD (1983) Case studies on the origin of Grenada basalts I: theory and reassessment of Grenada basalts. Contrib Miner Petrol 84:382–389CrossRefGoogle Scholar
  41. Hörmann PK, Pichler H (1982) Geochemistry, petrology and origin of the cenozoic volcanic rocks of the Northern Andes in Ecuador. J Volcanol Geotherm Res 12:259–282CrossRefGoogle Scholar
  42. Huppert HE, Sparks RSJ, Turner JS (1982) Effects of volatiles on mixing in calc-alkaline magma systems. Nature 297:554–557CrossRefGoogle Scholar
  43. James DE, Murcia LA (1984) Crustal Contamination in northern Andean volcanics. J Geol Soc Lond 141:823–830CrossRefGoogle Scholar
  44. Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J Volcanol Geotherm Res 4:117–132CrossRefGoogle Scholar
  45. Kay RW (1980) Volcanic arc magmas: implications of a melting-mixing model for element recycling in the crust-upper mantle system. J Geol 88:497–522CrossRefGoogle Scholar
  46. Kelemen PB (1995) Genesis of high Mg# andesites and the continental crust. Contrib Miner Petrol 120:1–19CrossRefGoogle Scholar
  47. Kelemen PB, Koga KT, Shimizu N (1997) Geochemistry of gabbro sills in the crust-mantle transition zone of the Oman ophiolite: implications for the origin of the oceanic lower crust. Earth Planet Sci Lett 146:475–488CrossRefGoogle Scholar
  48. Kelemen PB, Yogodzinski GM, Scholl DW (2003) Along-strike variation in the Aleutian island arc: genesis of high Mg# andesite and implications for continental crust. In: Eiler JM (ed) Inside the subduction factory: Geophys Monogr 138. AGU, Washington, pp 223–275Google Scholar
  49. Kilian R, Pichler H (1989) The Northeandean volcanic zone. Zbl Geol Paläont Teil IH 5(6):1075–1085Google Scholar
  50. Kouchi A, Sunagawa I (1985) A model for mixing basaltic and dacitic magmas as deduced from experimental data. Contrib Miner Petrol 89:17–23CrossRefGoogle Scholar
  51. Kuno H (1950) Petrology of Hakone volcano and the adjacent areas, Japan. Geol Soc Am Bull 61:957–1019CrossRefGoogle Scholar
  52. Langmuir CH, Vocke RD Jr, Hanson GN, Hart SR (1978) A general mixing equation with applications to Icelandic basalts. Earth Planet Sci Lett 37:380–392CrossRefGoogle Scholar
  53. Lonsdale P (1978) Ecuadorian subduction system. Am Assoc Pet Geol Bull 62:2454–2477Google Scholar
  54. Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243:581–593CrossRefGoogle Scholar
  55. Martin H (1988) Archaean and modern granitoids as indicators of changes in geodynamic processes. Rev Brasil Geocienc 17:360–365Google Scholar
  56. Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24CrossRefGoogle Scholar
  57. McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374CrossRefGoogle Scholar
  58. Monzier M, Robin C, Hall ML, Cotten J, Mothes P, Eissen J-P, Samaniego P (1997) Les adakites d’Equateur: modèle préliminaire. CR Acad Sci 324:545–552Google Scholar
  59. Monzier M, Samaniego P, Robin C, Beate B, Cotten J, Hall ML, Mothes P, Andrade D, Bourdon E, Eissen J-P, Le Pennec J-L, Ruiz AG, Toulkeridis T (2002) Evolution of the Pichincha Volcanic Complex (Ecuador), Extended abstracts volume of the 5th international symposium on andean geodynamics, Toulouse—France, pp 429–432Google Scholar
  60. Müntener O, Ulmer P (2006) Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of lower arc crust. Geophys Res Lett 33:L21308. doi: 10.1029/2006GL027629 CrossRefGoogle Scholar
  61. Mysen BO, Kushiro I, Nicholls IA, Ringwood AE (1974) A possible mantle origin for andesite magmas: discussion and replies. Earth Planet Sci Lett 21:221–229CrossRefGoogle Scholar
  62. Nicholls IA, Ringwood AE (1972) Production of silica-saturated tholeiitic magmas in island arcs. Earth Planet Sci Lett 17:243–246CrossRefGoogle Scholar
  63. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu Area, Northern Turkey. Contrib Miner Petrol 58:63–81CrossRefGoogle Scholar
  64. Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precamb Res 51:1–25CrossRefGoogle Scholar
  65. Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356CrossRefGoogle Scholar
  66. Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation, Longman, London, 352 ppGoogle Scholar
  67. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309CrossRefGoogle Scholar
  68. Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The crust: treatise on geochemistry 3 Holland HD, and Turekian KK (eds) Elsevier, Oxford, pp 1–64Google Scholar
  69. Sakuyama M (1981) Petrological study of the Myoko and Kurohime volcanoes, Japan: crystallization sequence and evidence for magma mixing. J Petrol 22:553–583Google Scholar
  70. Samaniego P, Martin H, Robin C, Monzier M (2002) Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: insights into slab melts and mantle wedge interactions. Geology 30:967–970CrossRefGoogle Scholar
  71. Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen J-P, Cotten J (2005) Temporal evolution of magmatism in the Northern Volcanic Zone of the Andes: the geology and petrology of Cayambe volcanic complex (Ecuador). J Petrol 46:2225–2252CrossRefGoogle Scholar
  72. Schiano P, Clochiatti R, Shimizu N, Maury RC, Jochum KP, Hofmann AW (1995) Hydrous silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377:595–600CrossRefGoogle Scholar
  73. Schiano P, Clocchiatti R, Boivin P, Médard E (2004) The nature of melt inclusions inside minerals in ultramafic cumulates from island arcs (Adak volcanic Center, Aleutian arc): Implications for the origin of high-Al basalts. Chem Geol 203:169–179CrossRefGoogle Scholar
  74. Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 Gpa: implications for the origin of adakites. Contrib Miner Petrol 117:394–409CrossRefGoogle Scholar
  75. Sisson TW, Grove TL (1993) Experimental investigations of the role of water in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113:143–166CrossRefGoogle Scholar
  76. Störmer JC, Nicholls J (1978) XLFRAC: a program for interactive testing of magmatic differentiation models. Comput Geosci 4:143–159CrossRefGoogle Scholar
  77. Tatsumi Y, Hamilton DL, Nesbitt RW (1986) Chemical characteristics of the fluid phase released from a subducted lithosphere and the origin of arc magmas: evidence from high pressure experiments and natural rocks. J Volcanol Geotherm Res 29:293–309CrossRefGoogle Scholar
  78. Treuil M, Joron J-L (1975) Utilisation des elements hygromagmatophiles pour la simplification de la modélisation quantitative des processus magmatiques: exemples de l’Afar et de la dorsale médio-atlantique. Soc Ital Miner Petrol 31:125–174Google Scholar
  79. Van Thournout F, Hertogen J, Quevedo L (1992) Allochthonous terranes in northwestern Ecuador. Tectonophysics 205:101–116Google Scholar
  80. Yoder HS, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–532Google Scholar
  81. Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geol Soc Amer Bull 107:505–519CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Pierre Schiano
    • 1
    • 2
    • 3
    Email author
  • M. Monzier
    • 1
    • 2
    • 3
  • J.-P. Eissen
    • 1
    • 2
    • 3
  • H. Martin
    • 1
    • 2
    • 3
  • K. T. Koga
    • 1
    • 2
    • 3
  1. 1.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.CNRS, UMR 6524, IRD, R 163Clermont-Ferrand CedexFrance
  3. 3.Laboratoire Magmas et VolcansUniversité Blaise PascalClermont-Ferrand CedexFrance

Personalised recommendations