Advertisement

Contributions to Mineralogy and Petrology

, Volume 160, Issue 2, pp 239–260 | Cite as

Evolving metasomatic agent in the Northern Andean subduction zone, deduced from magma composition of the long-lived Pichincha volcanic complex (Ecuador)

  • Pablo SamaniegoEmail author
  • Claude Robin
  • Gilles Chazot
  • Erwan Bourdon
  • Joseph Cotten
Original Paper

Abstract

Geochemical studies of long-lived volcanic complexes are crucial for the understanding of the nature and composition of the subduction component of arc magmatism. The Pichincha Volcanic Complex (Northern Andean Volcanic Zone) consists of: (1) an old, highly eroded edifice, the Rucu Pichincha, whose lavas are mostly andesites, erupted from 1,100 to 150 ka; and (2) a younger, essentially dacitic, Guagua Pichincha composite edifice, with three main construction phases (Basal Guagua Pichincha, Toaza, and Cristal) which developed over the last 60 ka. This structural evolution was accompanied by a progressive increase of most incompatible trace element abundances and ratios, as well as by a sharp decrease of fluid-mobile to fluid-immobile element ratios. Geochemical data indicate that fractional crystallization of an amphibole-rich cumulate may account for the evolution from the Guagua Pichincha andesites to dacites. However, in order to explain the transition between the Rucu Pichincha andesites and Guagua Pichincha dacites, the mineralogical and geochemical data indicate the predominance of magma mixing processes between a mafic, trace-element depleted, mantle-derived end-member, and a siliceous, trace-element enriched, adakitic end-member. The systematic variation of trace element abundances and ratios in primitive samples leads us to propose that the Rucu Pichincha magmas came from a hydrous-fluid metasomatized mantle wedge, whereas Guagua Pichincha magmas are related to partial melting of a siliceous-melt metasomatized mantle. This temporal evolution implies a change from dehydration to partial melting of the slab, which may be associated with an increase in the geothermal gradient along the slab due to the presence of the subducted Carnegie Ridge at the subduction system. This work emphasizes the importance of studying arc-magma systems over long periods of time (of at least 1 million of years), in order to evaluate the potential variations of the slab contribution into the mantle source of the arc magmatism.

Keywords

Pichincha Ecuador Northern Andean Volcanic Zone Arc magmatism Subduction Adakite Trace elements Isotopes 

Notes

Acknowledgments

We thank C. Bosq for carrying out the Sr–Nd isotopic analyses and S. Hidalgo, who provided unpublished Oxygen isotopic data for this volcanic complex. The manuscript benefited of the thoughtful comments of S. Hidalgo, E. Rose-Koga, and H. Martin. The english improvement made by Fran van Wik des Vries is also warmly acknowledged. We deeply thank the constructive review of P. Wallace, as well as the editorial handling of T.L. Grove. This contribution is part of a Ecuadorian–French cooperation program carried out between the Instituto Geofísico, Escuela Politécnica Nacional (IG-EPN), Quito, Ecuador and the French Institut de Recherche pour le Développement (IRD). This work is dedicated to the memory of our colleague and friend Michel Monzier, volcanologist at IRD, with whom we started this study some years ago.

Supplementary material

410_2009_475_MOESM1_ESM.xlsx (107 kb)
Supplementary material 1 (XLSX 107 kb)

References

  1. Alonso-Perez R, Muntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids. Contrib Mineral Petrol 157:541–558CrossRefGoogle Scholar
  2. Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in-hornblende barometer. Am Mineral 80:549–559Google Scholar
  3. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of calc-alkaline intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539. doi: 10.1093/petrology/egi084 CrossRefGoogle Scholar
  4. Arculus RJ, Lapierre H, Jaillard E (1999) Geochemical window into subduction and accretion processes: Raspas metamorphic complex, Ecuador. Geology 27:547–550CrossRefGoogle Scholar
  5. Aspden JA, Litherland M (1992) The geology and Mesozoic collisional history of the Cordillera Real, Ecuador. Tectonophysics 205:187–204. doi: 10.1016/0040-1951(92)90426-7 CrossRefGoogle Scholar
  6. Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146CrossRefGoogle Scholar
  7. Bachmann O, Dungan MA, Bussy F (2005) Insights into shallow magmatic processes in large silicic magma bodies: the trace element record in the Fish Canyon magma body, Colorado. Contrib Mineral Petrol 149:338–349CrossRefGoogle Scholar
  8. Barragán R, Geist D, Hall ML, Larson P, Kurz M (1998) Subduction controls on the compositions of lavas from the Ecuadorian Andes. Earth Planet Sci Lett 154:153–166CrossRefGoogle Scholar
  9. Beiersdorf H, Nathan JH (1983) Sedimentary and diagenetic processes in the central Panama basin since the Late Miocene: the lithology and composition of sediments from Deep Sea Drilling Project sites 504 and 505. In: Cann JR, Langseth MC, Honnorez J, Von Herzen RP, White SM et al (eds) Initial Reports. DSDP, vol 69. U.S. Govt. Printing Office, Washington, pp 343–383Google Scholar
  10. Bourdon E, Eissen JP, Gutscher MA, Monzier M, Samaniego P, Robin C, Bollinger C, Cotten J (2002a) Slab melting and slab melt metasomatism in the Northern Andean Volcanic Zone: adakites and high-Mg andesites from Pichincha volcano (Ecuador). Bull Soc Géol Fr 173:195–206CrossRefGoogle Scholar
  11. Bourdon E, Eissen JP, Monzier M, Robin C, Martin H, Cotten J, Hall ML (2002b) Adakite-like lavas from Antisana Volcano (Ecuador): evidence for slab melt metasomatism beneath the Andean Northern Volcanic Zone. J Petrol 43:199–217CrossRefGoogle Scholar
  12. Bourdon E, Eissen JP, Gutscher MA, Monzier M, Hall ML, Cotten J (2003) Magmatic response to early aseismic ridge subduction: the Ecuadorian margin case (South America). Earth Planet Sci Lett 205:123–138CrossRefGoogle Scholar
  13. Bryan WB, Finger LW, Chayes F (1969) Estimating proportions in petrographic mixing equations by least squares approximation. Science 163:926–927CrossRefGoogle Scholar
  14. Bryant JA, Yogodzinski GM, Hall ML, Lewicki JL, Bailey DG (2006) Geochemical constraints on the origin of volcanic rocks from the Andean Northern Volcanic Zone, Ecuador. J Petrol 47:1147–1175. doi: 10.1093/petrology/eg1006 CrossRefGoogle Scholar
  15. Chiaradia M, Muntener O, Beate B, Fontignie D (2009) Adakite-like volcanism of Ecuador: lower crust magmatic evolution and recycling. Contrib Mineral Petrol 158:563–588. doi: 10.1007/s00410-009-0397-2 CrossRefGoogle Scholar
  16. Class C, Miller DM, Goldstein SL, Langmuir CH (2000) Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochem Geophys Geosyst 1:1004. doi: 10.1029/1999GC000010 CrossRefGoogle Scholar
  17. Clynne MA (1999) A complex magma mixing origin for rocks erupted in 1915, Lassen Peak, California. J Petrol 40:105–132CrossRefGoogle Scholar
  18. Costa F, Scaillet B, Pichavant M (2004) Petrologic and phase equilibria constraints on the pre-eruption conditions of Holocene dacite from Volcan San Pedro (36°S, Chilean Andes) and the importance of sulfur in silicic subduction-related magmas. J Petrol 45:855–881CrossRefGoogle Scholar
  19. Cotten J, Le Dez A, Bau M, Caroff M, Maury RC, Dulski P, Fourcade S, Bohn M, Brousse R (1995) Origin of anomalous rare-earth element and Yttrium enrichments in subaerial exposed basalts: evidence from French Polynesia. Chem Geol 119:115–138CrossRefGoogle Scholar
  20. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  21. Elliott TR (2003) Tracer of the slab. In: Eiler J (ed) Inside the subduction factory. Geophysical monograph, vol 138. American Geophysical Union, Washington, pp 23–45Google Scholar
  22. Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana Arc. J Geophys Res 102:14991–15019CrossRefGoogle Scholar
  23. Garcia-Aristizabal A, Kumagai H, Samaniego P, Mothes P, Yepes H, Monzier M (2007) Seismic, petrologic, and geodetic analyses of the 1999 dome-forming eruption of Guagua Pichincha volcano, Ecuador. J Volcanol Geotherm Res 161:333–351CrossRefGoogle Scholar
  24. Garrison JM, Davidson JP (2003) Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 31:565–568CrossRefGoogle Scholar
  25. Goss AR, Kay SM (2006) Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: evidence for forearc subduction erosion? Geochem Geophys Geosyst 7. doi: 10.1029/2005GC001163
  26. Graindorge D, Calahorrano A, Charvis P, Collot JY, Bethoux N (2004) Deep structures of the margin and the Carnegie Ridge, possible consequence on great earthquake recurrence interval. Geophys Res Lett 31. doi: 10.1029/2003GL018803
  27. Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148:542–565. doi: 10.1007/s00410-004-0619-6 CrossRefGoogle Scholar
  28. Guillier B, Chatelain JL, Jaillard E, Yepes H, Poupinet G, Fels JF (2001) Seismological evidence on the geometry of the orogenic system in central-northern Ecuador (South America). Geophys Res Lett 28:3749–3752CrossRefGoogle Scholar
  29. Gutscher MA, Malavieille J, Lallemand S, Collot JY (1999) Tectonic segmentation of the North Andean margin: impact of the Carnegie Ridge collision. Earth Planet Sci Lett 168:255–270CrossRefGoogle Scholar
  30. Harpp KS, Wanless VD, Otto RH, Hoernle K, Werner R (2005) The Cocos and Carnegie aseismic ridges: a trace element record of long-term plume-spreading center interaction. J Petrol 46:109–133CrossRefGoogle Scholar
  31. Hidalgo S (2006) Les interactions entre magmas calco-alcalins «classiques» et adakites. Exemple du complexe volcanique Atacazo-Ninahuilca (Equateur). PhD thesis, Blaise Pascal University, Clermont-Ferrand, p 333Google Scholar
  32. Hidalgo S, Monzier M, Martin H, Chazot G, Eissen JP, Cotten J (2007) Adakitic magmas in the Ecuadorian volcanic front: petrogenesis of the Iliniza Volcanic Complex (Ecuador). J Volcanol Geotherm Res 159:366–392CrossRefGoogle Scholar
  33. Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Mineral Petrol 98:455–489CrossRefGoogle Scholar
  34. Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447CrossRefGoogle Scholar
  35. Jaillard E, Ordoñez M, Suarez J, Toro J, Iza D, Lugo W (2004) Stratigraphy of the late Cretaceous–Paleogene deposits of the Cordillera Occidental of central Ecuador: geodynamic implications. J South Am Earth Sci 17:49–58CrossRefGoogle Scholar
  36. Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminium-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology 17:837–841CrossRefGoogle Scholar
  37. Kay SM, Godoy E, Andrew K (2005) Episodic arc migration, crustal thickening, subduction erosion, and magmatism in the south-central Andes. Geol Soc Am Bull 117:67–88CrossRefGoogle Scholar
  38. Kelemen PB, Hanghøj K, Greene AR (2003a) One view of the geochemistry of subduction-related magmatic arcs with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust, vol 3. Holland HD, Turekian KK (eds) Treatise on geochemistry, Elsevier-Pergamon, Oxford, pp 593–659Google Scholar
  39. Kelemen PB, Rilling JL, Parmentier EM, Mehl L, Hacker BR (2003b) Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In: Eiler J (ed) Inside the subduction factory. Geophysical monograph, vol 138. American Geophysical Union, Washington, pp 293–311Google Scholar
  40. Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727CrossRefGoogle Scholar
  41. Kogiso T, Tatsumi Y, Nakano S (1997) Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth Planet Sci Lett 148:193–205CrossRefGoogle Scholar
  42. Le Voyer M, Rose-Koga EF, Laubier M, Schiano P (2008) Petrogenesis of arc lavas from the Rucu Pichincha and Pan de Azucar volcanoes (Ecuadorian arc): major, trace element, and boron isotope evidences from olivine-hosted melt inclusions. Geochem Geophys Geosyst 9:Q12027. doi: 10.1029/2008GC002173 CrossRefGoogle Scholar
  43. Litherland M, Aspden JA, Eguez A (1993) Mapa Geológico de la República del Ecuador, 1/1.000.000e. CODIGEM and British Geological Survey, QuitoGoogle Scholar
  44. Martin H (1987) Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland. Major and trace element geochemistry. J Petrol 28(5):921–953Google Scholar
  45. Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429CrossRefGoogle Scholar
  46. Martin H, Smithies RH, Rapp R, Moyen JF, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24CrossRefGoogle Scholar
  47. Monzier M, Robin C, Hall ML, Cotten J, Mothes P, Eissen JP, Samaniego P (1997) Les adakites d’Equateur: modele preliminaire. C R Acad Sci 324:545–552Google Scholar
  48. Monzier M, Samaniego P, Robin C, Beate B, Cotten J, Hall ML, Mothes P, Andrade D, Bourdon E, Eissen JP, Le Pennec JL, Ruiz AG, Toulkeridis T (2002) Evolution of the Pichincha volcanic complex (Ecuador). Proceedings of fifth international symposium on Andean geodynamics, Toulouse, pp 429–432Google Scholar
  49. Monzier M, Bourdon E, Samaniego P, Eissen JP, Robin C, Martin H, Cotten J (2003) Slab melting and Nb-enriched mantle beneath NVZ. Geophys Res Abstr 5:02087Google Scholar
  50. Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658Google Scholar
  51. Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesite magma by intrusion of mafic magma at Soufriere Hills volcano, Montserrat, West Indies. J Petrol 41:21–42CrossRefGoogle Scholar
  52. Peccerillo P, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  53. Pichavant M, Martel C, Bourdier J-L, Scaillet B (2002) Physical conditions, structure and dynamics of a zoned magma chamber: Mont Pelee (Martinique, Lesser Antilles Arc). J Geophys Res 107. doi: 10.1029/2001JB000315
  54. Pin C, Briot D, Bassin C, Poitrasson F (1994) Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal Chim Acta 298:209–214CrossRefGoogle Scholar
  55. Pin C, Santos Zalduegui JF (1997) Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: application to isotopic analyses of silicate rocks. Anal Chim Acta 339:79–89CrossRefGoogle Scholar
  56. Plank T (2005) Constraints from Thorium/Lanthanum on sediment recycling at subduction zones and the evolution of the continents. J Petrol 46:921–944CrossRefGoogle Scholar
  57. Prévot R, Chatelain JL, Guillier B, Yepes H (1996) Tomographie des Andes équatoriennes: évidence d’une continuité des Andes centrales. C R Acad Sci Paris 323:833–840Google Scholar
  58. Prouteau G, Scaillet B (2003) Experimental constraints on the origin of the 1991 Pinatubo dacite. J Petrol 44:2203–2241CrossRefGoogle Scholar
  59. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931Google Scholar
  60. Rapp RP, Watson EB, Miller CF (1991) Partial melting of amphibolitereclogite and the origin of Archaean trondhjemites and tonalites. Precambrian Res 5:1–25CrossRefGoogle Scholar
  61. Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol 160:335–356CrossRefGoogle Scholar
  62. Reynaud C, Jaillard E, Lapierre H, Mamberti M, Mascle G (1999) Oceanic plateau and island arcs of southwestern Ecuador: their place in the geodynamic evolution of northwestern South America. Tectonophysics 307:235–254CrossRefGoogle Scholar
  63. Robin C, Samaniego P, Le Pennec JL, Mothes P, van der Plitch J (2008) Radiocarbon dating of Late Holocene phases of dome growth and Plinian activity at Guagua Pichincha volcano (Ecuador). J Volcanol Geotherm Res 176:7–15CrossRefGoogle Scholar
  64. Robin C, Eissen JP, Samaniego P, Martin H, Hall ML, Cotten J (2009a) Evolution of the late Pleistocene Mojanda–Fuya Fuya volcanic complex (Ecuador), by progressive adakitic involvement in mantle magma sources. Bull Volcanol 71:233–258. doi: 10.1007/s00445-008-0219-9 CrossRefGoogle Scholar
  65. Robin C, Samaniego P, Le Pennec JL, Fornari M, Mothes P, van der Plitch J (2009b) The development of the large, long-lived, mainly silicic, and active Pichincha volcanic complex. Bull Volcanol (submitted)Google Scholar
  66. Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman, Harlow, 352pGoogle Scholar
  67. Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98:19667–19685CrossRefGoogle Scholar
  68. Ryan JG, Morris J, Tera F, Leeman WP, Tsvetkov A (1995) Cross-arc geochemical variations in the Kurile arc as a function of slab depth. Science 270:625–627CrossRefGoogle Scholar
  69. Sage F, Collot JY, Ranero CR (2006) Interplate patchiness and subduction–erosion mechanisms: evidence from depth-migrated seismic images at the central Ecuador convergent margin. Geology 34:997–1000CrossRefGoogle Scholar
  70. Samaniego P, Martin H, Robin C, Monzier M (2002) Transition from calc-alkalic to adakitic magmatism at Cayambe volcano, Ecuador: insights into slab melts and mantle wedge interactions. Geology 30:967–970CrossRefGoogle Scholar
  71. Samaniego P, Martin H, Monzier M, Robin C, Fornari M, Eissen JP, Cotten J (2005) Temporal evolution of magmatism at Northern Volcanic Zone of the Andes: the geology and petrology of Cayambe volcanic complex (Ecuador). J Petrol 46:2225–2252CrossRefGoogle Scholar
  72. Samaniego P, Eissen JP, Le Pennec JL, Robin C, Hall ML, Mothes P, Chavrit D, Cotten J (2008) Pre-eruptive physical conditions of El Reventador volcano (Ecuador), deduced from the petrology of the 2002 and 2004–05 eruptions. J Volcanol Geotherm Res 176:82–93CrossRefGoogle Scholar
  73. Scaillet B, Evans BW (1999) The 15 June 1991 Eruption of Mount Pinatubo: I. Phase equilibria and pre-eruption P–T–fO2fH2O conditions of the dacite magma. J Petrol 40:381–411CrossRefGoogle Scholar
  74. Schiano P, Monzier M, Eissen JP, Martin H, Koga KT (2009) Simple mixing as the major control of the evolution of volcanic suites in the Ecuadorian Andes. Contrib Mineral Petrol (accepted)Google Scholar
  75. Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contrib Mineral Petrol 117:394–409CrossRefGoogle Scholar
  76. Shaw DM (1970) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243CrossRefGoogle Scholar
  77. Stern RJ (2002) Subduction zones. Rev Geophys 40:1012. doi: 10.1029/2001RG000108 Google Scholar
  78. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Special Publication 42. Geological Society, London, pp 313–345Google Scholar
  79. Tatsumi Y (1989) Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res 94:4697–4707CrossRefGoogle Scholar
  80. Van Keken PE, Kiefer B, Peacock S (2002) High resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3:1056. doi: 10.1029/2001GC000256 CrossRefGoogle Scholar
  81. Weber MBI, Tarney J, Kempton PD, Kent RW (2002) Crustal make-up of the northern Andes: evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. Tectonophysics 345:49–82CrossRefGoogle Scholar
  82. White WM, McBirney AR, Duncan RA (1993) Petrology and geochemistry of the Galapagos islands: portrait of a pathological mantle plume. J Geophys Res 98:19533–19563CrossRefGoogle Scholar
  83. Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and process in the mantle wedge. Geol Soc Am Bull 107:505–519CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Pablo Samaniego
    • 1
    • 2
    • 3
    • 4
    • 8
    Email author
  • Claude Robin
    • 3
    • 4
  • Gilles Chazot
    • 5
    • 6
  • Erwan Bourdon
    • 7
  • Joseph Cotten
    • 5
    • 6
  1. 1.Laboratoire Magmas et VolcansClermont Université, Université Blaise PascalClermont-FerrandFrance
  2. 2.Laboratoire Magmas et Volcans, UMR 6524CNRSClermont-FerrandFrance
  3. 3.Laboratoire Magmas et Volcans, R 163IRDClermont-FerrandFrance
  4. 4.Instituto GeofísicoEscuela Politécnica NacionalQuitoEcuador
  5. 5.Université Européenne de BretagneRennesFrance
  6. 6.UMR 6538 Domaines Océaniques, Institut Universitaire Européen de la Mer, CNRSUniversité de BrestPlouzanéFrance
  7. 7.BRGM, SGR GuadeloupeRoute de l’Observatoire - Le HouëlmontGourbeyreGuadeloupe, FWI
  8. 8.Laboratoire Magmas et VolcansUniversité Blaise Pascal-CNRS-IRDClermont-Ferrand CedexFrance

Personalised recommendations