Contributions to Mineralogy and Petrology

, Volume 159, Issue 4, pp 541–561 | Cite as

Degassing, crystallization and eruption dynamics at Stromboli: trace element and lithium isotopic evidence from 2003 ashes

  • Federica Schiavi
  • Katsura Kobayashi
  • Takuya Moriguti
  • Eizo Nakamura
  • Massimo Pompilio
  • Massimo Tiepolo
  • Riccardo Vannucci
Original Paper


During its 1800-year-long persistent activity the Stromboli volcano has erupted a highly porphyritic (HP) volatile-poor scoriaceous magma and a low porphyritic (LP) volatile-rich pumiceous magma. The HP magma is erupted during normal Strombolian explosions and lava effusions, while the LP one is related to more energetic paroxysms. During the March–April 2003 explosive activity, Stromboli ejected two typologies of juvenile glassy ashes, namely highly vesicular LP shards and volatile-poor HP shards. Their textural and in situ chemical characteristics are used to unravel mutual relationships between HP and LP magmas, as well as magma dynamics within the shallow plumbing system. The mantle-normalized trace element patterns of both ash types show the typical arc-lava pattern; however, HP glasses possess incompatible element concentrations higher than LP glasses, along with Sr and Eu negative anomalies. HP shards are generally characterized by higher Li contents (to ~20 ppm) and lower δ7Li values (+1.2 to −3.8‰) with respect to LP shards (Li contents of 7–14 ppm and δ7Li ranging between +4.6 and +0.9‰). Fractional crystallization models based on major and trace element compositions, combined with a degassing model based on open-system Rayleigh distillation and on the assumption that melt/fluidDLi > 1, show that abundant (~30%) plagioclase precipitation and variable degrees of degassing can lead the more primitive LP magma to evolve toward a differentiated (isotopically lighter) HP magma ponding in the upper conduit and undergoing slow continuous degassing-induced crystallization. This study also evidences that in March 2003 Stromboli volcano poured out a small early volume of LP magma that traveled slower within the conduit with respect to later and larger volumes of fast ascending LP magma erupted during the April 5 paroxysm. The different ascent rates and cooling rates of the two LP magma batches (i.e., pre- and post-paroxysm) resulted in small, but detectable, differences in their chemical signatures. Finally, this study highlights the high potential of in situ investigations of juvenile glassy ashes in petrologic and geochemical monitoring the volcanic activity and of Li isotopes as tracers of degassing processes within the shallow plumbing system.


Stromboli Volcanic ash Lithium isotopes Degassing-induced crystallization Petrologic monitoring 



The authors are greatly indebted to A. Bertagnini, L. Francalanci, P. Landi, N. Métrich, M. Palenzona, C. Sakaguchi, R. Tanaka, S. Tommasini and A. Zanetti for providing samples, lab assistance, petrologic and chemical data and scientific advice. FS and RV wish to thank COE-21 (Japan) and the scientific and administrative staff of ISEI for giving the opportunity to conduct research in the PML lab, for providing assistance, as well as for their warm hospitality, during stages at Misasa. R. Halama, L. Francalanci and an anonymous reviewer are gratefully acknowledged for constructive criticism and comments that greatly improved an early version of the manuscript. This research was supported by COE-21 (Japan) and MIUR, CNR, INGV (Italy) funds.

Supplementary material

410_2009_441_MOESM1_ESM.xls (46 kb)
Supplementary material 1 (XLS 46 kb)
410_2009_441_MOESM2_ESM.xls (48 kb)
Supplementary material 2 (XLS 47 kb)
410_2009_441_MOESM3_ESM.xls (72 kb)
Supplementary material 3 (XLS 72 kb)
410_2009_441_MOESM4_ESM.xls (70 kb)
Supplementary material 4 (XLS 70 kb)
410_2009_441_MOESM5_ESM.pdf (511 kb)
Supplementary material 5 (PDF 510 kb)


  1. Aiuppa A, Federico C (2004) Anomalous magmatic degassing prior to the 5th April 2003 paroxysm on Stromboli. Geophys Res Lett 31:L14607. doi: 10.1029/2004GL020458 CrossRefGoogle Scholar
  2. Allard P, Aiuppa A, Burton M, Caltabiano T, Federico C, Salerno G, La Spina A (2008) Crater gas emissions and the magma feeding system of Stromboli volcano. In: Calvari S, Inguaggiato S, Puglisi G, Ripepe M, Rosi M (eds) The Stromboli volcano. An integrated study of the 2002–2003 eruption. Geophysical monograph series 182, American Geophysical Union, pp 65–80Google Scholar
  3. Andronico D, Corsaro RA, Cristaldi A, Polacci M (2009) Characterizing high energy explosive eruptions at Stromboli volcano using multidisciplinary data: an example from the 9 January 2005 explosion. J Volcanol Geotherm Res 176(4):541–550CrossRefGoogle Scholar
  4. Beck P, Barrat JA, Chaussidon M, Gillet PH, Bohn M (2004) Li isotopic variations in single pyroxenes from the Northwest Africa 480 shergottite (NWA 480): a record of degassing of Martian magmas? Geochim Cosmochim Acta 68:2925–2933CrossRefGoogle Scholar
  5. Beck P, Chaussidon M, Barrat JA, Gillet PH, Bohn M (2006) Diffusion induced Li isotopic fractionation during the cooling of magmatic rocks: the case of pyroxene phenocrysts from nakhlite meteorites. Geochim Cosmochim Acta 70:4813–4825. doi: 10.1016/j.gca.2006.07.025 CrossRefGoogle Scholar
  6. Berlo K, Blundy J, Turner S, Cashman K, Hawkesworth C, Black S (2004) Geochemical precursors to volcanic activity at Mount St. Helens, USA. Science 306:1167–1169. doi: 10.1126/science.1103869 CrossRefGoogle Scholar
  7. Bertagnini A, Coltelli M, Landi P, Pompilio M, Rosi M (1999) Violent explosions yield new insights into dynamic of Stromboli volcano. EOS Trans AGU 80(52):633–636CrossRefGoogle Scholar
  8. Bertagnini A, Métrich N, Landi P, Rosi M (2003) Stromboli volcano (Aeolian Archipelago, Italy): an open window on the deep-feeding system of a steady state basaltic volcano. J Geophys Res 108(B7). doi: 10.1029/2002JB002146
  9. Bertagnini A, Métrich N, Francalanci L, Landi P, Tommasini S, Conticelli S (2008) Volcanology and magma geochemistry of the present-day activity: constraints on the feeding system. In: Calvari S et al. (eds) The Stromboli volcano: an integrated study of the 2002–2003 eruption. AGU, Geophysical Monograph Series, vol 182, pp 19–37Google Scholar
  10. Bindeman IN, Davis AM, Drake MJ (1998) Ion microprobe study of plagioclase-basalt partition experiments at natural concentrations levels of trace elements. Geochim Cosmochim Acta 62:1175–1193CrossRefGoogle Scholar
  11. Blundy J, Cashman K, Humphreys M (2006) Magma heating by decompression-driven crystallization beneath andesite volcanoes. Nature 443:76–80. doi: 10.1038/nature05100 CrossRefGoogle Scholar
  12. Brenan JM, Neroda CC, Lundstrom HF, Shaw FJ, Ryerson FJ, Phinney DL (1998) Behaviour of boron, beryllium and lithium during melting and crystallization: constraints from mineral-melt partitioning experiments. Geochim Cosmochim Acta 62:2129–2141CrossRefGoogle Scholar
  13. Burton MR, Mader HM, Polacci M (2007) The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth Planet Sci Lett 264:46–60. doi: 10-1016/j.epsl.2007.08.028 CrossRefGoogle Scholar
  14. Carapezza ML, Inguaggiato S, Brusca L, Longo M (2004) Geochemical precursors of the activity of an openconduit volcano: the Stromboli 2002–2003 eruptive events. Geophys Res Lett 31. doi: 10.1029/2004GL019614
  15. Cashman KV (1992) Groundmass crystallization of Mount St. Helens dacite, 1980–1986: a tool for interpreting shallow magmatic processes. Contrib Mineral Petrol 109:431–449CrossRefGoogle Scholar
  16. Cashman KV, Hoblitt RP (2004) Magmatic precursors to the 18 May 1980 eruption of Mount St. Helens, USA. Geology 32:141–144. doi: 10.1130/G20078.1 CrossRefGoogle Scholar
  17. Chan LH, Frey FA (2003) Lithium isotope geochemistry of the Hawaiian plume: results from the Hawaiian scientific drilling project and Koolau volcano. Geochem Geophys Geosystems 4. doi: 10.1029/2002GC000365
  18. Chan LH, Edmond JM, Thompson G, Gillis K (1992) Lithium isotopic composition of submarine basalts—implications for the lithium cycle in the oceans. Earth Planet Sci Lett 108:151–160CrossRefGoogle Scholar
  19. Chan LH, Alt JC, Teagle DA (2002a) Lithium and lithium isotope profiles through the upper oceanic crust: a study of seawater-basalt exchange at ODP Sites 504B and 896A. Earth Planet Sci Lett 201:187–201CrossRefGoogle Scholar
  20. Chan LH, Leeman WP, You C-F (2002b) Lithium isotopic composition of Central American volcanic arc lavas: implications for modification of subarc mantle by slab-derived fluids: correction. Chem Geol 182:293–300CrossRefGoogle Scholar
  21. Corsaro RA, Pompilio M (2004) Magma dynamics in the shallow plumbing system of Mt. Etna as recorded by compositional variations in volcanics of recent summit activity (1995–1999). J Volcanol Geotherm Res 137(1–3):55–71CrossRefGoogle Scholar
  22. Couch S, Sparks RS, Carroll MR (2003) The kinetics of degassing-induced crystallization at Soufriere Hills Volcano, Montserrat. J Petrol 44:1477–1502CrossRefGoogle Scholar
  23. D’Orazio M, Armienti P, Cerretini S (1998) Phenocryst/matrix trace-element partition coefficients for hawaiite-trachyte lavas from the Ellittico volcanic sequence (Mt. Etna, Sicily, Italy). Mineral Petrol 64:65–88CrossRefGoogle Scholar
  24. DePaolo DJ (1981) Trace element and isotopic effects of combined wall-rock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202CrossRefGoogle Scholar
  25. Di Carlo I, Pichavant M, Rotolo S, Scaillet B (2006) Experimental crystallization of a high-K arc basalt: the Golden Pumice, Stromboli volcano (Italy). J Petrol 47:1317–1343. doi: 10.1093/petrology/eg1011 CrossRefGoogle Scholar
  26. Di Roberto A, Bertagnini A, Pompilio M, Gamberi F, Marani MP, Rosi AM (2008) Newly discovered submarine flank eruption at Stromboli volcano (Aeolian Islands, Italy). Geophys Res Lett 35. doi: 10.1029/2008GL034824
  27. Duke JM (1976) Distribution of the period four transition elements among olivine, calcic clinopyroxene and mafic silicate liquid: experimental results. J Petrol 17:499–521Google Scholar
  28. Elliott T, Jeffcoate A, Bouman C (2004) The terrestrial Li isotope cycle: light-weight constraints on mantle convection. Earth Planet Sci Lett 220:231–245. doi: 10.1016/S0012-821X(04)00096-2 CrossRefGoogle Scholar
  29. Elliott T, Thomas A, Jeffcoate A, Niu Y (2006) Lithium isotope evidence for subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443:565–568. doi: 10.1038/nature05144 CrossRefGoogle Scholar
  30. Francalanci L, Manetti P, Peccerillo A (1989) Volcanological and magmatological evolution of Stromboli volcano (Aeolian Islands): the roles of fractional crystallization, magma mixing, crustal contamination and source heterogeneity. Bull Volcanol 51:355–378CrossRefGoogle Scholar
  31. Francalanci L, Tommasini S, Conticelli S, Davies GR (1999) Sr isotope evidence for short magma residence time for the 20th century activity at Stromboli volcano, Italy. Earth Planet Sci Lett 167:61–69CrossRefGoogle Scholar
  32. Francalanci L, Tommasini S, Conticelli S (2004) The volcanic activity of Stromboli in the 1906–1998 AD period: mineralogical, geochemical and isotope data relevant to the understanding of the plumbing system. J Volcanol Geotherm Res 131:179–211. doi: 10.1016/S0377-0273(03)00362-7 CrossRefGoogle Scholar
  33. Francalanci L, Davies GR, Lustenhouwer W, Tommasini S, Mason P, Conticelli S (2005) Intra-grain Sr isotope evidence for crystal recycling and multiple magma reservoirs in the recent activity of Stromboli Volcano, Southern Italy. J Petrol 46(10):1997–2021. doi: 10-1093/petrology/egi045 CrossRefGoogle Scholar
  34. Francalanci L, Bertagnini A, Métrich N, Renzulli A, Vannucci R, Landi P, Del Moro S, Menna M, Petrone CM, Nardini I (2008) Mineralogical, geochemical, and isotopic characteristics of the ejecta from the 5 April, 2003 paroxysm at Stromboli, Italy: inferences on the preeruptive magma dynamics. In: Calvari S et al. (eds) The Stromboli Volcano: an integrated study of the 2002–2003 eruption. AGU, Geophysical Monograph Series, vol 182, pp 331–345Google Scholar
  35. Gasparini C, Iannacone G, Scandone P, Scarpa R (1982) Seismotectonics of the Calabrian Arc. Tectonophysics 84:267–286CrossRefGoogle Scholar
  36. Gillot PY, Keller J (1993) Radiochronological dating of Stromboli. Acta Vulcanol 3:69–77Google Scholar
  37. Guilbaud MN, Blake S, Thordarson T, Self S (2007) Role of syn-eruptive cooling and degassing on textures of lavas from the AD 1783–1784 Laki eruption, South Iceland. J Petrol 48:1265–1294. doi: 10.1093/petrology/egm017 CrossRefGoogle Scholar
  38. Halama R, McDonough WF, Rudnick RL, Keller J, Klaudius J (2007) The Li isotopic composition of Oldoinyo Lengai: nature of the mantle sources and lack of isotopic fractionation during carbonatite petrogenesis. Earth Planet Sci Lett 254:77–89CrossRefGoogle Scholar
  39. Halama R, Savov IP, Rudnick RL, McDonough WF (2009) Insights into Li and Li isotope cycling and sub-arc metasomatism from veined mantle xenoliths, Kamchatka. Contrib Mineral Petrol 158:197–222. doi: 10.1007/s00410-009-0378-5 CrossRefGoogle Scholar
  40. Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8CrossRefGoogle Scholar
  41. Hornig-Kjarsgaard I, Keller J, Koberski U, Stadbauer E, Francalanci L, Lenhart R (1993) Geology, stratigraphy and volcanological evolution of the island of Stromboli, Aeolian Arc, Italy. Acta Vulcanol 3:21–68Google Scholar
  42. James RH, Allen DE, Seyfried WE Jr (2003) An experimental study of alteration of oceanic crust and terrigenous sediments at moderate temperatures (51–350°C): insights as to chemical processes in near-shore ridge-flank hydrothermal systems. Geochim Cosmochim Acta 67:681–691CrossRefGoogle Scholar
  43. Jeffcoate AB, Elliott T, Kasemann SA, Ionov D, Cooper K, Brooker R (2007) Li isotope fractionation in peridotites and mafic melts. Geochim Cosmochim Acta 71:202–218. doi: 10.1016/j.gca.2006.06.1611 CrossRefGoogle Scholar
  44. Kobayashi K, Tanaka R, Moriguti T, Shimizu K, Nakamura E (2004) Lithium, boron and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chem Geol 212:143–161. doi: 10.1016/j.chemgeo.2004.08.050 CrossRefGoogle Scholar
  45. Laiolo M, Cigolini C (2006) Mafic and ultramafic xenoliths in San Bartolo lava field: new insights on the ascent and storage of Stromboli magmas. Bull Volcanol 68:653–670. doi: 10.1007/s00445-005-0040-7 CrossRefGoogle Scholar
  46. Landi P, Métrich N, Bertagnini A, Rosi M (2004) Dynamics of magma mixing and degassing recorded in plagioclase at Stromboli (Aeolian Archipelago, Italy). Contrib Mineral Petrol 147:213–227. doi: 10.1007/s00410-004-0555-5 CrossRefGoogle Scholar
  47. Landi P, Francalanci L, Pompilio M, Rosi M, Corsaro RA, Petrone CM, Nardini I, Miraglia L (2006) The December 2002–July 2003 effusive event at Stromboli volcano, Italy: insights into the shallow plumbing system by petrochemical studies. J Volcanol Geotherm Res 155:263–284. doi: 10.1016/j.jvolgeores.2006.03.032 CrossRefGoogle Scholar
  48. Landi P, Métrich N, Bertagnini A, Rosi M (2008) Recycling and “re-hydration” of degassed magma inducing transient dissolution/crystallization events at Stromboli (Italy). J Volcanol Geotherm Res 174(4):325–336CrossRefGoogle Scholar
  49. Landi P, Corsaro RA, Francalanci L, Civetta L, Miraglia L, Pompilio M, Tesoro R (2009) Magma dynamics during the 2007 Stromboli eruption (Aeolian Islands, Italy): mineralogical, geochemical and isotopic data. J Volcanol Geotherm Res (published on line). doi: 10.1016/j.jvolgeores.2008.11.010
  50. Lautze NC, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy. Bull Volcanol 69:445–460. doi: 10.1007/s00445-006-0086-1 CrossRefGoogle Scholar
  51. Leeman WP, Tonarini S, Chan LH, Borg LE (2004) Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem Geol 212(1–2):101–124. doi: 10.1016/j.chemgeo.2004.08.010 CrossRefGoogle Scholar
  52. London D, Hervig RL, Morgan GB (1988) Melt-vapor solubilities and elemental partitioning in peraluminous granite–pegmatite systems: experimental results with Macusani glass at 200 MPa. Contrib Mineral Petrol 99:360–373CrossRefGoogle Scholar
  53. Magna T, Wiechert U, Grove TL, Halliday AN (2006) Lithium isotope fractionation in the southern Cascadia subduction zone. Earth Planet Sci Lett 250:428–443. doi: 10.1016/j.epsl.2006.08.019 CrossRefGoogle Scholar
  54. Makishima A, Nakamura E (2006) Determination of major, minor and trace elements in silicate samples by ICP-QMS and ICP-SFMS applying isotope dilution-internal standardisation (ID-IS) and multi-stage internal standardisation. Geostand Geoanal Res 30:245–271CrossRefGoogle Scholar
  55. Marschall HR, Pogge von Strandmann PA, Seitz HM, Elliott T, Niu Y (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580. doi: 10.1016/j.epsl.2007.08.005 CrossRefGoogle Scholar
  56. Métrich N, Rutherford MJ (1998) Low pressure crystallization paths of H2O-saturated basaltic-hawaiitic melts from Mt. Etna: implications for open-system degassing of basaltic volcanoes. Geochim Cosmochim Acta 62(7):1195–1205CrossRefGoogle Scholar
  57. Métrich N, Bertagnini A, Landi P, Rosi M (2001) Crystallization driven by decompression and water loss at Stromboli Volcano (Aeolian Islands, Italy). J Petrol 42(8):1471–1490CrossRefGoogle Scholar
  58. Métrich N, Bertagnini A, Landi P, Rosi M, Belhadj O (2005) Triggering mechanism at the origin of paroxysms at Stromboli (Aeolian Archipelago, Italy): the 5 April 2003 eruption. Geophys Res Lett 32. doi:  10.1029/2004GL022257
  59. Moriguti T, Nakamura E (1998a) Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth Planet Sci Lett 163:167–174CrossRefGoogle Scholar
  60. Moriguti T, Nakamura E (1998b) High-yield lithium separation and the precise isotopic analysis for natural rock and aqueous samples. Chem Geol 145:91–104CrossRefGoogle Scholar
  61. Moriguti T, Shibata T, Nakamura E (2004) Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: implications for variation of slab-derived fluid composition due to mineralogical reactions in the subducting slab. Chem Geol 212:81–100. doi: 10.1016/j.chemgeo.2004.08.005 CrossRefGoogle Scholar
  62. Nakamura E, Makishima A, Moriguti T, Kobayashi K, Sakaguchi C, Yokoyama T, Tanaka R, Kuritani T, Takei H (2003) Comprehensive geochemical analyses of small amounts (<100 mg) of extraterrestrial samples for the analytical competition related to the sample return mission MUSES-C. In: Kushiro I, Fujiwara A, Yano H (eds) Asteroidal sample preliminary examination team, inst space and astron sci report, sp no. 16. Sagamihara, Japan, pp 49–101Google Scholar
  63. Noguchi S, Toramaru A, Shimano T (2006) Crystallization of microlites and degassing during magma ascent: constraints on the fluid mechanical behavior of magma during the Tenjo Eruption on Kozu Island, Japan. Bull Volcanol 68:432–449. doi: 10.1007/s00445-005-0019-4 CrossRefGoogle Scholar
  64. Ottolini L, Bottazzi P, Zanetti A, Vannucci R (1995) Determination of hydrogen in silicates by secondary ion mass spectrometry. Analyst 120:1309–1313CrossRefGoogle Scholar
  65. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from Kastamorum area, Northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  66. Pichavant M, Di Carlo I, Le Gac Y, Rotolo SG, Scaillet B (2009) Experimental constraints on the deep magma feeding system at Stromboli Volcano, Italy. J Petrol 50:601–624. doi: 10.1093/petrology/egp014 CrossRefGoogle Scholar
  67. Piochi M, Polacci M, De Astis G, Zanetti A, Mangiacapra A, Vannucci R, Giordano D (2008) Texture and composition of pumices and scoriae from the Campi Flegrei caldera (Italy): Implications on the dynamics of explosive eruptions. Geochem Geophys Geosyst 9. doi:  10.1029/2007GC001746
  68. Polacci M, Baker DR, Mancini L, Tromba G, Zanini F (2006) Three-dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes, Geophys Res Lett 33. doi: 10.1029/2006GL026241
  69. Puglisi G, Bonaccorso A, Mattia M, Aloisi M, Bonforte A, Campisi O, Cantarero M, Falzone G, Puglisi B, Rossi M (2005) New integrated geodetic monitoring system at Stromboli volcano (Italy). Eng Geol 79:13–31CrossRefGoogle Scholar
  70. Richter FM, Davis AM, De Paolo DJ, Watson EB (2003) Isotope fractionation by chemical diffusion between molten basalt and rhyolite. Geochim Cosmochim Acta 67:3905–3923CrossRefGoogle Scholar
  71. Ripepe M, Marchetti E, Ulivieri G, Harris A, Dehn J, Burton M, Caltabiano T, Salerno G (2005) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33:341–344. doi: 10.1130/G21173.1 CrossRefGoogle Scholar
  72. Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli Volcano (Italy). Bull Volcanol 62:294–300. doi: 10.1007/s004450000098 CrossRefGoogle Scholar
  73. Rosi M, Bertagnini A, Harris A, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet Sci Lett 243:594–606. doi: 10.1016/j.epsl.2006.01.035 CrossRefGoogle Scholar
  74. Rudnick RL, Tomascak PB, Njo HB, Gardner LR (2004) Extreme lithium isotopic fractionation during continental weathering revealed in saprolites from South Carolina. Chem Geol 212:45–57. doi: 10.1016/j.chemgeo.2004.08.008 CrossRefGoogle Scholar
  75. Ryan JG, Langmuir CH (1987) The systematics of lithium abundances in young volcanic rocks. Geochim Cosmochim Acta 51:1727–1741CrossRefGoogle Scholar
  76. Schiavi F (2007) Studio geochimico di inclusioni vetrose e ceneri nei prodotti dell′attivitá recente dei vulcani Stromboli ed Etna: implicazioni per l′origine e l′evoluzione dei magmi. Ph.D. Thesis, University of PaviaGoogle Scholar
  77. Schiavi F, Tiepolo M, Pompilio M, Vannucci R (2006) Tracking magma dynamics by laser ablation (LA)-ICPMS trace element analysis of glass in volcanic ash: the 1995 activity of Mt. Etna. Geophys Res Lett 33(5). doi: 10.1029/2005GL024789
  78. Spadaro FR, Lefevre RA, Ausset P (2002) Experimental rapid alteration of basaltic glass: implications for the origins of atmospheric particulates. Geology 30(8):671–674CrossRefGoogle Scholar
  79. Speranza F, Pompilio M, Sagnotti L (2004) Paleomagnetism of spatter lavas from Stromboli volcano (Aeolian Islands, Italy): implications for the age of paroxysmal eruptions. Geophys Res Lett 31. doi: 10.1029/2003GL018944
  80. Speranza F, Pompilio M, D’Ajello Caracciolo F, Sagnotti L (2008) Holocene eruptive history of the Stromboli volcano: constraints from paleomagnetic dating. J Geophys Res 113. doi:  10.1029/2007JB005139
  81. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Oceanic Basins. Geol Soc Spec Publ 42, pp 313–345Google Scholar
  82. Tang YJ, Zhang HF, Nakamura E, Moriguti T, Kobayashi K, Ying JF (2007) Lithium isotopic systematics of peridotite xenoliths from Hannuoba, North China Craton: implications for melt-rock interaction in the considerably thinned lithospheric mantle. Geochim Cosmochim Acta 71:4327–4341. doi: 10.1016/j.gca.2007.07.006 CrossRefGoogle Scholar
  83. Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178. doi: 10.1016/j.gca.2004.03.031 CrossRefGoogle Scholar
  84. Tepley FJ, Davidson JP, Tilling RI, Arth JG (2000) Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico. J Petrol 41:1397–1411CrossRefGoogle Scholar
  85. Tiepolo M, Tribuzio R, Vannucci R (2002) The compositions of mantle-derived melts developed during the Alpine continental collision. Contrib Mineral Petrol 144:1–15. doi: 10.1007/s00410-002-0387-0 Google Scholar
  86. Tiepolo M, Bottazzi P, Palenzona M, Vannucci R (2003) A laser probe coupled with ICP-double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U–Pb dating of zircon. Can Mineral 41:259–272CrossRefGoogle Scholar
  87. Tomascak PB (2004) Developments in the understanding and application of lithium isotopes in the Earth and planetary sciences. In: Johnson C, Beard B, Albarede F (eds) Geochemistry of non-traditional stable isotopes. Minerological Society of America, Washington, pp 153–195Google Scholar
  88. Tomascak PB, Carlson RW, Shirey SB (1999a) Accurate and precise determination of Li isotopic compositions by multicollector sector ICP-MS. Chem Geol 158:145–154CrossRefGoogle Scholar
  89. Tomascak PB, Tera F, Helz RT, Walker RJ (1999b) The absence of lithium isotope fractionation during basalt differentiation: new measurements by multicollector sector ICP-MS. Geochim Cosmochim Acta 63(6):907–910CrossRefGoogle Scholar
  90. Tomascak PB, Widom E, Benton LD, Goldstein SL, Ryan JG (2002) The control of lithium budgets in island arcs. Earth Planet Sci Lett 196:227–238CrossRefGoogle Scholar
  91. Tomascak PB, Langmuir CH, le Roux PJ, Shirey SB (2008) Lithium isotopes in global mid-ocean ridge basalts. Geochim Cosmochim Acta 72:1626–1637. doi: 10.1016/j.gca.2007.12.021 CrossRefGoogle Scholar
  92. Vaggelli G, Olmi F, Conticelli S (1999) Evaluation of analytical errors during microprobe analyses of silicate minerals international reference samples. Acta Volcanol 11:297–303Google Scholar
  93. Watanabe Koichiro, Danhara T, Watanabe Kazunori, Terai K, Yamashita T (1999) Juvenile volcanic glass erupted before the appearance of the 1991 lava dome, Unzen volcano, Kyushu, Japan. J Volcanol Geotherm Res 89:113–121CrossRefGoogle Scholar
  94. Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace elements between H2O and H2O + CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134. doi: 10.2113/gsecongeo.84.1.116 CrossRefGoogle Scholar
  95. Wolf KJ, Eichelberger JC (1997) Syneruptive mixing, degassing, and crystallization at Redoubt Volcano, eruption of December 1989–May 1990. J Volcanol Geotherm Res 75:19–37CrossRefGoogle Scholar
  96. Wunder B, Meixner A, Romer RL, Heinrich W (2006) Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120. doi: 10.1007/s00410-005-0049-0 CrossRefGoogle Scholar
  97. Wunder B, Meixner A, Romer RL, Feenstra A, Schettler G, Heinrich W (2007) Lithium isotope fractionation between Li-bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem Geol 238:277–290CrossRefGoogle Scholar
  98. Yokoyama T, Makishima A, Nakamura E (1999) Evaluation of the coprecipitation of incompatible trace elements with fluoride during silicate rock dissolution by acid digestion. Chem Geol 157:175–187CrossRefGoogle Scholar
  99. Zack T, Tomascak PB, Rudnick RL, Dalpe C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotope fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290CrossRefGoogle Scholar
  100. Zanetti A, Tiepolo M, Oberti R, Vannucci R (2004) Trace-element partitioning in olivine: modeling of a complete data set from a synthetic hydrous basanite melt. Lithos 75:39–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Federica Schiavi
    • 1
  • Katsura Kobayashi
    • 2
  • Takuya Moriguti
    • 2
  • Eizo Nakamura
    • 2
  • Massimo Pompilio
    • 3
  • Massimo Tiepolo
    • 4
  • Riccardo Vannucci
    • 4
    • 5
  1. 1.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  2. 2.The Pheasant Memorial Laboratory for Geochemistry and Cosmochemistry (PML), Institute for Study of the Earth’s InteriorOkayama University at MisasaTottori-kenJapan
  3. 3.Istituto Nazionale di Geofisica e VulcanologiaPisaItaly
  4. 4.CNR, Istituto di Geoscienze e GeorisorsePaviaItaly
  5. 5.Dipartimento di Scienze della TerraUniversità degli Studi di PaviaPaviaItaly

Personalised recommendations