Dehydration of dioctahedral aluminous phyllosilicates: thermodynamic modelling and implications for thermobarometric estimates

  • Benoît Dubacq
  • Olivier Vidal
  • Vincent De Andrade
Original Paper

Abstract

We propose a solid-solution model for dioctahedral aluminous phyllosilicates accounting for the main compositional variations, including hydration, observed in natural smectites, interlayered illite/smectite, illites, and phengites from diagenetic to high-grade metamorphic conditions. The suggested formalism involves dehydrated micas and hydrated pyrophyllite-like thermodynamic end-members. With these end-members, the equilibrium conditions of quartz + water + K-bearing mica-like phyllosilicates of fixed 2:1 composition are represented by a line in PT space along which the interlayer water content varies. The relevant thermodynamic properties required for the calculation of equilibrium conditions were derived using a set of 250 natural data of known maximal temperature and pressure conditions, which covers a range between 25°C and few MPa to 800°C and 5 GPa. The temperatures calculated at fixed pressure with our model are in fair agreement with those reported in the literature for the 250 natural data. At low temperature and pressure, the amount of interlayer water in K-deficient phengite and illite is predicted to reach 100% of the apparent vacancies, which is consistent with previous values reported in the literature. Although the amount of interlayer water is predicted to decrease with pressure and temperature, it is calculated to be significant in K-deficient phengite from LT–HP pelites metamorphosed at about 350°C, 10 kbar. The presence of molecular water in the interlayer site of such phengites has been confirmed by FTIR mapping. Its implications for PT estimates are discussed.

Keywords

Thermodynamics Clay minerals Hydration Thermobarometry Phengites Solid solution 

References

  1. Aagaard P, Helgeson HC (1983) Activity/composition relations among silicates and aqueous solutions II. Chemical and thermodynamic consequences of ideal mixing of atoms among energetically equivalent sites in montmorillonites, illites, and mixed layer clays. Clay Clay Miner 31:207–217CrossRefGoogle Scholar
  2. Agard P (1999) Evolution métamorphique et structurale des métapélites océaniques dans l’orogenèse Alpin: l’exemple des Schistes Lustrés des Alpes occidentales (Alpes Cottiennes). PhD Thesis, Université Paris VIGoogle Scholar
  3. Agard P, Jullien M, Goffe B, Baronnet A, Bouybaouene M (1999) TEM evidence for high-temperature (300 degrees C) smectite in multistage clay-mineral pseudomorphs in pelitic rocks (Rif, Morocco). Eur J Mineral 11(4):655–668Google Scholar
  4. Agard P, Goffe B, Touret JLR, Vidal O (2000) Retrograde mineral and fluid evolution in high-pressure metapelites (Schistes lustres unit, Western Alps). Contrib Mineral Petrol 140(3):296–315CrossRefGoogle Scholar
  5. Agard P, Jolivet L, Goffé B (2001a) Tectonometamorphic evolution of the Schistes Lustrés complex: implications for the exhumation of HP and UHP rocks in the western Alps. Bulletin de la Société Géologique de France 172(5):617–636CrossRefGoogle Scholar
  6. Agard P, Vidal O, Goffé B (2001b) Interlayer and Si content of phengite in HP–LT carpholite-bearing metapelites. J Metamorph Geol 19(5):479–496CrossRefGoogle Scholar
  7. Aja S (1995) Thermodynamic properties of some 2/1 layer clay-minerals from solution-equilibration data. Eur J Mineral 7(2):325–333Google Scholar
  8. Arancibia G, Morata D (2005) Compositional variations of syntectonic white-mica in low-grade ignimbritic mylonite. J Struct Geol 27:745–767CrossRefGoogle Scholar
  9. Arenas R, Rubio Pascual FJ, Diaz Garcia F, Martinez Catalan JR (1995) High-pressure micro-inclusions and development of an inverted metamorphic gradient in the Santiago Schists (Ordenes Complex, NW Iberian Massif, Spain): evidence of subduction and syncollisional decompression. J Metamorph Geol 13:141–164CrossRefGoogle Scholar
  10. Arkai P, Faryad SW, Vidal O, Balogh K (2003) Very low-grade metamorphism of sedimentary rocks of the Meliata unit, Western Carpathians, Slovakia: implications of phyllosilicate characteristics. Int J Earth Sci (Geol Rundsch) 92:1Google Scholar
  11. Augier R, Booth-Rea G, Agard P, Martinez-Martinez JM, Jolivet L, Azanon JM (2005) Exhumation constraints for the lower Nevado–Filabride Complex (Betic Cordillera, SE Spain): a Raman thermometry and Tweequ multiequilibrium thermobarometry approach. Bulletin de la Société Géologique de France 176(5):403–416Google Scholar
  12. Bala P, Samantaray BK, Srivastava SK (2000) Dehydration transformation in Ca-montmorillonite. Bull Mater Sci 23(1):61–67CrossRefGoogle Scholar
  13. Battaglia S (2004) Variations in the chemical composition of illite from five geothermal fields: a possible geothermometer. Clay Miner 39:501–510CrossRefGoogle Scholar
  14. Berman RG (1991) Thermobarometry using multi-equilibrium calculations; a new technique, with petrological applications. Can Mineral 29(4):833–855Google Scholar
  15. Berman RG, Brown Th (1985) Heat-capacity of minerals in the system NA2O–K2O–CAO–MGO–FEO–FE2O3–AL2O3–SIO2–TIO2–H2O–CO2-representation, estimation, and high-temperature extrapolation. Contrib Mineral Petrol 89(2–3):168–183CrossRefGoogle Scholar
  16. Berman RG, Aranovich LY, Rancourt DG, Mercier PHJ (2007) Reversed phase equilibrium constraints on the stability of Mg–Fe–Al biotite. Am Mineral 92:139–150CrossRefGoogle Scholar
  17. Besson G, Drits VA (1997) Refined relationships between chemical composition of dioctahedral fine-grained mica minerals and their infrared spectra within the OH stretching region. 1. Identification of the OH stretching bands. Clay Clay Miner 45(2):158–169CrossRefGoogle Scholar
  18. Bish DL, Carey JW, Vaniman DT, Chipera SJ (2003) Stability of hydrous minerals on the martian surface. Icarus 164(1):96–103CrossRefGoogle Scholar
  19. Bishop BP, Bird DK (1987) Variation in sericite compositions from fracture zones within the Coso Hot Springs geothermal system. Geochim Cosmochim Acta 51:1245–1256CrossRefGoogle Scholar
  20. Bosse V, Ballevre M, Vidal O (2002) Ductile thrusting recorded by the garnet isograde from blueschist-facies metapelites of the Ile de Groix, Armorican Massif, France. J Petrol 43(3):485–510CrossRefGoogle Scholar
  21. Bousquet R (1998) L’exhumation des roches métamorphiques de haute pression-basse température: de l’étude de terrain à la modélisation numérique. Exemple de la fenêtre de l’Engadine et du domaine Valaisan dans les Alpes Centrales. PhD Thesis, Université Paris XIGoogle Scholar
  22. Bousquet R, Goffe B, Vidal O, Oberhansli R, Patriat M (2002) The tectono-metamorphic history of the Valaisan domain from the Western to the Central Alps: New constraints on the evolution of the Alps. Geol Soc Am Bull 114(2):207–225CrossRefGoogle Scholar
  23. Butler IS, Frost RL (2006) An overview of the high-pressure vibrational spectra of clays and related minerals. Appl Spectrosc Rev 41(5):449–471CrossRefGoogle Scholar
  24. Cathelineau M (1988a) The chlorite and illite geothermometers. Chem Geol 70 (1–2):182Google Scholar
  25. Cathelineau M (1988b) Cation site occupancy in chlorites and illites as a function of temperature. Clay Miner 23:471–485CrossRefGoogle Scholar
  26. Coggon R, Holland TJB (2002) Mixing properties of phengitic micas and revised garnet–phengite thermobarometers. J Metamorph Geol 20:683–696CrossRefGoogle Scholar
  27. Daczko NR, Clarke GL, Klepeis KA (2002) Kyanite-paragonite-bearing assemblages, northern Fiordland, New Zealand: rapid cooling of the lower crustal root to a Cretaceous magmatic arc. J Metamorph Geol 20:887–902CrossRefGoogle Scholar
  28. De Andrade V, Vidal O, Lewin E, O’Brien P, Agard P (2006) Quantification of electron microprobe compositional maps of rock thin sections: an optimized method and examples. J Metamorph Geol 24:655–668Google Scholar
  29. De Caritat P, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clay Clay Miner 41(2):219–239CrossRefGoogle Scholar
  30. Del Villar LP, Reyes E, Delgado A, Nunez R, Pelayo M, Cozar JS (2003) Argillization processes at the El Berrocal analogue granitic system (Spain): mineralogy, isotopic study and implications for the performance assessment of radwaste geological disposal. Chem Geol 193:273–293CrossRefGoogle Scholar
  31. Di Vincenzo G, Ghiribelli B, Giorgetti G, Palmeri R (2001) Evidence of a close link between petrology and isotope records: constraints from SEM, EMP, TEM and in situ 40Ar039Ar laser analyses on multiple generations of white micas (Lanterman Range, Antarctica). Earth Planet Sci Lett 192(3):389–405CrossRefGoogle Scholar
  32. Drief A, Schiffman P (2004) Very low-temperature alteration of sideromelane in hyaloclastites and hyalotuffs from Kilauea and Mauna Kea volcanoes: implications for the mechanism of palagonite formation. Clay Clay Miner 52(5):622–634Google Scholar
  33. Drits VA, McCarty DK (2007) The nature of structure-bonded H2O in illite and leucophyllite from dehydration and dehydroxylation experiments. Clay Clay Miner 55(1):45–58CrossRefGoogle Scholar
  34. Escuder-Viruete J, Pérez-Estaun A (2006) Subduction-related PT path for eclogites and garnet glaucophanites from the Samana Peninsula basement complex, northern Hispaniola. Int J Earth Sci (Geol Rundsch) 95:995–1017CrossRefGoogle Scholar
  35. Essene EJ (1982) Geologic thermometry and barometry. Rev Mineral 10:153–206Google Scholar
  36. Essene EJ (1989) The current status of thermobarometry in metamorphic rocks. Geol Soc Spec Publ 43:1–44CrossRefGoogle Scholar
  37. Essene EJ, Peacor DR (1995) Clay mineral thermometry—a critical perspective. Clay Clay Miner 43(5):540–553CrossRefGoogle Scholar
  38. Ferrage E, Tournassat C, Rinnert E, Charlet L, Lanson B (2005) Experimental evidence for Ca-chloride ion pairs in the interlayer of montmorillonite. An XRD profile modeling approach. Clay Clay Miner 53(4):348–360CrossRefGoogle Scholar
  39. Ferrage E, Lanson B, Sakharov BA, Geoffroy N, Jacquot E, Drits VA (2007) Investigation of dioctahedral smectite hydration properties by modeling of X-ray diffraction profiles: influence of layer charge and charge location. Am Mineral 92(10):1731–1743CrossRefGoogle Scholar
  40. Fletcher CJN, Greenwood HJ (1978) Metamorphism and structure of Penfold Creek Area, near Quesnel Lake, British Columbia. J Petrol 20:743–794Google Scholar
  41. Ganne J, Bussy F, Vidal O (2003) Multi-stage garnet in the internal Brianconnais basement (Ambin massif, Savoy): new petrological constraints on the blueschist-facies metamorphism in the Western Alps and tectonic implications. J Petrol 44(7):1281–1308CrossRefGoogle Scholar
  42. García-Romero E, Vegas J, Baldonedo JL, Marfil R (2005) Clay minerals as alteration produts in basaltic volcaniclastic deposits of La Palma (Canary Island, Spain). Sed Geol 174:237–253CrossRefGoogle Scholar
  43. Giggenbach WF (1984) Mass-transfer in hydrothermal alteration systems—a conceptual-approach. Geochim Cosmochim Acta 48(12):2693–2711CrossRefGoogle Scholar
  44. Gordillo MC, Marti J (2002) Molecular dynamics description of a layer of water molecules on a hydrophobic surface. J Chem Phys 117(7):3425–3430CrossRefGoogle Scholar
  45. Gordon TM, Ghent ED, Stout MZ (1991) Algebraic analysis of the biotite-sillimanite isograd in the File Lake area, Manitoba. Can Mineral 29:673–686Google Scholar
  46. Guidotti CV, Sassi FP (1998) Petrogenetic significance of Na–K white mica mineralogy. Recent advances for metamorphic rocks. Eur J Mineral 10:815–854Google Scholar
  47. Hodges KV, Spear FS (1982) Geothermometry, geobarometry and the Al2siO5 triple point at Mt Moosilauke, New-Hampshire. Am Mineral 67(11–1):1118–1134Google Scholar
  48. Hoisch TD (1990) Empirical calibration of 6 geobarometers for the mineral assemblage quartz + muscovite + biotite + plagioclase + garnet. Contrib Mineral Petrol 104(2):225–234CrossRefGoogle Scholar
  49. Hower J, Mowatt TC (1966) The mineralogy of illites and mixed-layer illite/montmorillonites. Am Mineral 51:825–854Google Scholar
  50. Huang WL, Bassett WA, Wu TC (1994) Dehydration and hydration of montmorillonite at elevated-temperatures and pressures monitored using synchrotron-radiation. Am Mineral 79(7–8):683–691Google Scholar
  51. Inui M, Toriumi M (2002) Prograde pressure–temperature paths in the pelitic schists of the Sambagawa metamorphic belt, SW Japan. J Metamorph Geol 6:563–580CrossRefGoogle Scholar
  52. Jolivet L, Rimmele G, Oberhansli R, Goffe B, Candan O (2004) Correlation of syn-orogenic tectonic and metamorphic events in the Cyclades, the Lycian nappes and the Menderes massif. Geodynamic implications. Bulletin de la Société Géologique de France 175(3):217–238CrossRefGoogle Scholar
  53. Junfeng J, Browne PRL (2000) Relationship between illite crystallinity and temperature in active geothermal systems of new zealand. Clay Clay Miner 48(1):139–144Google Scholar
  54. Keller LM, De Capitani C, Abart R (2005) A quaternary solution model for white micas based on natural coexisting phengite–paragonite pairs. J Petrol 46(10):2129–2144CrossRefGoogle Scholar
  55. Kidder S, Ducea MN (2006) High temperatures and inverted metamorphism in the schist of Sierra de Salinas, California. Earth Planet Sci Lett 241:422–437CrossRefGoogle Scholar
  56. Koster van Groos AF, Guggenheim S (1984) The effect of pressure on the dehydration reaction of interlayer water in na-montmorillonite (SWY-1). Am Mineral 69(9–10):872–879Google Scholar
  57. Koster van Groos AF, Guggenheim S (1986) Dehydration of K-exchanged montmorillonite at elevated temperatures and pressures. Clays Clay Miner 34(3):281–286CrossRefGoogle Scholar
  58. Lackschewitz KS, Botz R, Garbe-Schonberg D, Scholten J, Stoffers P (2006) Mineralogy and geochemistry of clay samples from active hydrothermal vents off the north coast of Iceland. Mar Geol 225:177–190CrossRefGoogle Scholar
  59. Lagarias JC, Reeds JA, Wright MH, Wright PE (1998) Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM J Optim 9(1):112–147CrossRefGoogle Scholar
  60. Lang HM, Gilotti JA (2007) Partial melting of metapelites at ultrahigh-pressure conditions, Greenland Caledonides. J Metamorph Geol 25:129–147CrossRefGoogle Scholar
  61. Le Hebel F, Vidal O, Kienast JR, Gapais D (2002) Evidence for HP–LT Hercynian metamorphism within the ‘Porphyroides’ of South Brittany (France). Comp Rend Geosci 334(3):205–211CrossRefGoogle Scholar
  62. Leoni L, Sartori F, Tamponi M (1998) Compositional variation in K-white micas and chlorites coexisting in Al-saturated metapelites under late diagenetic to low-grade metamorphic conditions (Internal Liguride Units, Northern Apennines, Italy). Eur J Mineral 10(6):1321–1339Google Scholar
  63. Likhanov II, Reverdatto VV, Sheplev VS, Verschinin AE, Kozlov PS (2001) Contact metamorphism of Fe- and Al-rich graphitic metapelites in the Transangarian region of the Yenisei Ridge, eastern Siberia, Russia. Lithos 58:55–80CrossRefGoogle Scholar
  64. Lippman F (1982) The thermodynamic status of clay minerals. International Clay Conference 1981. Developments in Sedimentology, vol 35. Elsevier, Amsterdam, pp 475–485Google Scholar
  65. Liu CW, Lin WS (2005) A smectite dehydration model in a shallow sedimentary basin: model development. Clay Clay Miner 53(1):55–70CrossRefGoogle Scholar
  66. Liu J, Ye K, Sun M (2006) Exhumation PT path of UHP eclogites in the Hong’an area, western Dabie Mountains, China. Lithos 89:154–173CrossRefGoogle Scholar
  67. Lopez-Munguira A, Nieto F, Morata D (2002) Chlorite composition and geothermometry: a comparative HRTEM/AEM-EMPA-XRD study of Cambrian basic lavas from the Ossa Morena Zone, SW Spain. Clay Miner 37(2):267–281CrossRefGoogle Scholar
  68. Loucks RR (1991) The bound interlayer H2O content of potassic white micas; muscovite–hydromuscovite–hydropyrophyllite solutions. Am Mineral 76:1563–1579Google Scholar
  69. Madejová J (2003) FTIR techniques in clay mineral studies. Vib Spectrosc 31(1):1–10CrossRefGoogle Scholar
  70. Malasoma A, Marroni M, Musumeci G, Pandolfi L (2006) High-pressure mineral assemblage in granitic rocks from continental units, Alpine Corsica, France. Geol J 41(1):49–59CrossRefGoogle Scholar
  71. Mas A, Patrier P, Beaufort D, Genter A (2003) Clay-mineral signatures of fossil and active hydrothermal circulations in the geothermal system of the Lamentin Plain, Martinique. J Volcanol Geoth Res 124:195–218CrossRefGoogle Scholar
  72. Mas A, Guisseau D, Patrier Mas P, Beaufort D, Genter A, Sanjuan B, Girard JP (2006) Clay minerals related to the hydrothermal activity of the Bouillante geothermal field (Guadeloupe). J Volcanol Geoth Res 158:380–400CrossRefGoogle Scholar
  73. Massonne H-J, Szpurka Z (1997) Thermodynamic properties of white micas on the basis of high pressure experiments in the systems K2O–MgO–Al2O3–SiO2 and K2O–FeO–Al2O3–SiO2–H2O. Lithos 41:229–250CrossRefGoogle Scholar
  74. Meunier A, Velde B (1989) Solid solutions in I/S mixed-layer minerals and illite. Am Mineral 74:1106–1112 Google Scholar
  75. Michot LJ, Bihannic I, Pelletier M, Rinnert E, Robert JL (2005) Hydration and swelling of synthetic Na-saponites: influence of layer charge. Am Mineral 90(1):166–172CrossRefGoogle Scholar
  76. Mishra B, Upadhyay D, Bernhardt HJ (2006) Metamorphism of the host and associated rocks at the Rajpura–Dariba massive sulfide deposit, Northwestern India. J Asian Earth Sci 26:21–37CrossRefGoogle Scholar
  77. Moore DM, Hower J (1986) Ordered interstratification of dehydrated and hydrated Na-smectite. Clay Clay Miner 34(4):379–384CrossRefGoogle Scholar
  78. Niu B, Yoshimura T, Hirai A (2000) Smectite diagenesis in neogene marine sandstone and mudstone of the Niigata Basin, Japan. Clays Clay Miner 48(1):26–42CrossRefGoogle Scholar
  79. Ooteman A, Ferrow EA, Lindh A (2003) An electron microscopy study of deformation microstructures in granitic mylonites from southwestern Sweden, with special emphasis on the micas. Mineral Petrol 78:255–268CrossRefGoogle Scholar
  80. Ota T, Terabayashi M, Katayama I (2004) Thermobaric structure and metamorphic evolution of the Iratsu eclogite body in the Sanbagawa belt, central Shikoku, Japan. Lithos 73:95–126CrossRefGoogle Scholar
  81. Page FZ, Armstrong LS, Essene EJ, Mukasa SB (2007) Prograde and retrograde history of the Junction School eclogite, California, and an evaluation of garnet–phengite–clinopyroxene thermobarometry. Contrib Mineral Petrol 153:533–555CrossRefGoogle Scholar
  82. Parra T, Vidal O, Agard P (2002) A thermodynamic model for Fe–Mg dioctahedral K white micas using data from phase-equilibrium experiments and natural pelitic assemblages. Contrib Mineral Petrol 143:706–732Google Scholar
  83. Pigage LC (1982) Linear regression analysis of sillimanite-forming reactions at Azure Lake, British Columbia. Can Mineral 20:349–378Google Scholar
  84. Pigage LC, Greenwood HJ (1982) Consistent estimates of pressure and temperature; the staurolite problem. Am J Sci 282(7):943–969Google Scholar
  85. Pokrovsky OS, Mielczarski JA, Barres O, Schott J (2000) Surface speciation models of calcite and dolomite/aqueous solution interfaces and their spectroscopic evaluation. Langmuir 16(6):2677–2688CrossRefGoogle Scholar
  86. Potel S (2007) Very low-grade metamorphic study in the pre-Late Cretaceous terranes of New Caledonia (southwest Pacific Ocean). Island Arc 16:291–305CrossRefGoogle Scholar
  87. Preinfalk C, Kostitsyn Y, Morteani G (2002) The pegmatites of the Nova Era-Itabira-Ferros pegmatite district and the emerald mineralisation of Capoeirana and Belmont (Minas Gerais, Brazil): geochemistry and Rb-Sr dating. J S Am Earth Sci 14(8):867–887CrossRefGoogle Scholar
  88. Ransom B, Helgeson HC (1994) A chemical and thermodynamic model of aluminous dioctahedral 2:1 layer clay minerals in diagenetic processes: regular solution representation of interlayer dehydration in smectite. Am J Sci 294:449–484Google Scholar
  89. Rolfo F, Compagnoni R, Wu W, Xu S (2004) A coherent lithostratigraphic unit in the coesite-eclogite complex of Dabie Shan, China: geologic and petrologic evidence. Lithos 73:71–94CrossRefGoogle Scholar
  90. Schmid R, Franz L, Oberhänsli R, Dong S (2000) High Si-phengite, mineral chemistry and PT evolution of ultra-high-pressure eclogites and calc-silicates from the Dabie Shan, eastern PR China. Geol J 35(3–4):185–207CrossRefGoogle Scholar
  91. Slonimskaya MV, Besson G, Daynyak LG, Tchoubar C, Drits VA (1986) Interpretation of the IR spectra of celadonites, glauconites in the region of OH-stretching frequencies. Clay Miner 21:377–388CrossRefGoogle Scholar
  92. Tillick DA, Peacor DR, Mauk JL (2001) Genesis of dioctahedral phyllosilicates during hydrothermal alteration of volcanic rocks: I. The golden cross epithermal ore deposit. N Z Clays Clay Miner 49(2):126–140CrossRefGoogle Scholar
  93. Timón SM, Moro MC, Cembranos ML, Fernández A, Crespo JL (2007) Contact metamorphism in the Los Santos W skarn (NW Spain). Mineral Petrol 90(1–2):109–140CrossRefGoogle Scholar
  94. Topuz G, Altherr R, Satır M, Schwarz WH (2004) Low-grade metamorphic rocks from the Pulur complex, NE Turkey: implications for the pre-Liassic evolution of the Eastern Pontides. Int J Earth Sci (Geol Rundsch) 93:72–91CrossRefGoogle Scholar
  95. Tracy RJ (1978) High-grade metamorphic reactions and partial melting in pelitic schist, West-Central Massachusetts. Am J Sci 278(2):150–178Google Scholar
  96. Trotet F, Vidal O, Jolivet L (2001) Exhumation of Syros and Sifnos metamorphic rocks (Cyclades, Greece). New constraints on the PT paths. Eur J Mineral 13(5):901–920CrossRefGoogle Scholar
  97. Vazquez M, Abad I, Jimenez-Millan J, Rocha FT, Fonseca PE, Chamine HI (2007) Prograde epizonal clay mineral assemblages and retrograde alteration in tectonic basins controlled by major strike-slip zones (W. Iberian Variscan chain). Clay Miner 42:109–128CrossRefGoogle Scholar
  98. Vidal O, Dubacq B (2009) Thermodynamic modelling of clay dehydration, stability and compositional evolution with temperature, pressure and aH2O. Geochimica et Cosmochimica Acta (submitted)Google Scholar
  99. Vidal O, Parra T (2000) Exhumation paths of high pressure metapelites obtained from local equilibria for chlorite-phengite assemblages. Geol J 35(3–4):139–161CrossRefGoogle Scholar
  100. Vidal O, Parra T, Trotet F (2001) A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100–600°C, 1–25 kbar PT range. Am J Sci 301:557–592CrossRefGoogle Scholar
  101. Vidal O, Parra T, Vieillard Ph (2005) Thermodynamic properties of the Tschermak solid solution in Fe-chlorites: application to natural examples and possible role of oxidation. Am Mineral 90(2–3):347–358CrossRefGoogle Scholar
  102. Vidal O, DeAndrade V, Lewin E, Munoz M, Parra T, Pascarelli S (2006) PT-deformation-Fe3+/Fe2+ mapping at the thin section scale and comparison with XANES mapping. Application to a garnet-bearing metapelite from the Sambagawa metamorphic belt (Japan). J Metamorph Geol 24:669–683Google Scholar
  103. Wang GF, Banno SH (1987) Nonstoichiometry of interlayer cations in micas from low-grade to middle-grade metamorphic rocks in the ryoke and the sambagawa belts, Japan. Contrib Mineral Petrol 97(3):313–319CrossRefGoogle Scholar
  104. Weaver CE, Pollard LD (1973) The chemistry of clay minerals. Developments in Sedimentology, Elsevier, Amsterdam, p 213Google Scholar
  105. Wu T-C, Bassett WA, Huang W-L, Guggenheim S, Koster van Groos AF (1997) Montmorillonite under high H2O pressure: stability of hydrate phases, rehydration hysteresis, and the effect of interlayer cations. Am Mineral 82:69–78Google Scholar
  106. Yamato P, Agard P, Goffe B, De Andrade V, Vidal O, Jolivet L (2007) New, high-precision PT estimates for Oman blueschists: implications for obduction, nappe stacking and exhumation processes. J Metamorph Geol 25(6):657–682CrossRefGoogle Scholar
  107. Ylagan RF, Altaner SP, Pozzuoli A (2000) Reaction mechanisms of smectite illitization associated with hydrothermal alteration from Ponza Island, Italy. Clay Clay Miner 48(6):610–631CrossRefGoogle Scholar
  108. Zhang JX, Meng FC, Wan YS (2007) A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China: petrological and U-Pb geochronological constraints. J Metamorph Geol 25:285–304CrossRefGoogle Scholar
  109. Zhao ZY, Wei CJ, Fang AM (2005) Plastic flow of coesite eclogite in a deep continent subduction regime: microstructures, deformation mechanisms and rheologic implications. Earth Planet Sci Lett 237:209–222CrossRefGoogle Scholar
  110. Zviagina BB, McCarty DK, Srodon J, Drits VA (2004) Interpretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations. Clay Clay Miner 52(4):399–410CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Benoît Dubacq
    • 1
    • 3
  • Olivier Vidal
    • 1
  • Vincent De Andrade
    • 2
  1. 1.CNRS, Université Joseph Fourier Grenoble, LGCAGrenoble CedexFrance
  2. 2.European Synchrotron Radiation FacilityGrenobleFrance
  3. 3.Department of Earth SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations