On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere

  • Craig B. GrimesEmail author
  • Barbara E. John
  • Michael J. Cheadle
  • Frank K. Mazdab
  • Joseph L. Wooden
  • Susan Swapp
  • Joshua J. Schwartz
Original Paper


We characterize the textural and geochemical features of ocean crustal zircon recovered from plagiogranite, evolved gabbro, and metamorphosed ultramafic host-rocks collected along present-day slow and ultraslow spreading mid-ocean ridges (MORs). The geochemistry of 267 zircon grains was measured by sensitive high-resolution ion microprobe-reverse geometry at the USGS-Stanford Ion Microprobe facility. Three types of zircon are recognized based on texture and geochemistry. Most ocean crustal zircons resemble young magmatic zircon from other crustal settings, occurring as pristine, colorless euhedral (Type 1) or subhedral to anhedral (Type 2) grains. In these grains, Hf and most trace elements vary systematically with Ti, typically becoming enriched with falling Ti-in-zircon temperature. Ti-in-zircon temperatures range from 1,040 to 660°C (corrected for a TiO2 ≈ 0.7, a SiO2 ≈ 1.0, pressure ≈ 2 kbar); intra-sample variation is typically ~60–150°C. Decreasing Ti correlates with enrichment in Hf to ~2 wt%, while additional Hf-enrichment occurs at relatively constant temperature. Trends between Ti and U, Y, REE, and Eu/Eu* exhibit a similar inflection, which may denote the onset of eutectic crystallization; the inflection is well-defined by zircons from plagiogranite and implies solidus temperatures of ~680–740°C. A third type of zircon is defined as being porous and colored with chaotic CL zoning, and occurs in ~25% of rock samples studied. These features, along with high measured La, Cl, S, Ca, and Fe, and low (Sm/La)N ratios are suggestive of interaction with aqueous fluids. Non-porous, luminescent CL overgrowth rims on porous grains record uniform temperatures averaging 615 ± 26°C (2SD, n = 7), implying zircon formation below the wet-granite solidus and under water-saturated conditions. Zircon geochemistry reflects, in part, source region; elevated HREE coupled with low U concentrations allow effective discrimination of ~80% of zircon formed at modern MORs from zircon in continental crust. The geochemistry and textural observations reported here serve as an important database for comparison with detrital, xenocrystic, and metamorphosed mafic rock-hosted zircon populations to evaluate provenance.


Zircon Ocean Crust Magmatic Zircon Zircon Population Zircon Crystallization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank the captains and crews the R/V Atlantis, and DSRV Alvin and Jason on the MARVEL2000 cruise, the Knorr Cruise 180-2, and the JOIDES Resolution along with shipboard parties on ODP Legs 176, 209, IODP Exp. 304/305. The authors acknowledge Henry Dick for access to samples from the SW Indian Ridge. This research used samples and data provided by the Integrated Ocean Drilling Program (IODP). Technical assistance from Brad Ito during our sessions on the SHRIMP is gratefully acknowledged. This work was supported by the National Science Foundation (OCE-0352054 and OCE-0752558 to Cheadle and John, and OCE-0550456 to John), Joint Oceanographic Institutions grants to Grimes and John, and a NASA space grant to Schwartz. We thank Peter Kelemen for early discussions of ocean zircon chemistry, and Ralf Halama and two anonymous reviewers for comments and suggestions helpful in improving this manuscript.

Supplementary material

410_2009_409_MOESM1_ESM.xls (258 kb)
Supplementary material 1 (XLS 258 kb)


  1. Bacon CR, Sisson TW, Mazdab FK (2007) Young cumulate complex beneath Veniamin of caldera, Aleutian arc, dated by zircon in erupted plutonic blocks. Geology 35:491–494. doi: 10.1130/G23446A.1 CrossRefGoogle Scholar
  2. Baines AG (2006) Geodynamic investigation of ultra-slow spreading oceanic lithosphere; Atlantis Bank and vicinity, SW Indian Ridge. Ph.D. Dissertation, University of WyomingGoogle Scholar
  3. Baines AG, Cheadle MJ, John BE, Schwartz JJ (2008) The rate of oceanic detachment faulting at Atlantis Bank, SW Indian Ridge. Earth Planet Sci Lett doi: 10.1016/j.epsl.2008.06.013
  4. Ballard JR, Palin MJ, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144:347–364. doi: 10.1007/s00410-002-0402-5 Google Scholar
  5. Belousova EA, Griffin WL, O’Reilly SY, Fisher NJ (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622. doi: 10.1007/s00410-002-0364-7 Google Scholar
  6. Black LP, Williams IS, Compston W (1986) Four zircon ages from one rock: the history of a 3930 Ma-old granulite from Mount Sones, Enderby Land, Antarctica. Contrib Mineral Petrol 94:427–437. doi: 10.1007/BF00376336 CrossRefGoogle Scholar
  7. Blackman DK, Ildefonse B, John BE, Ohara Y, Miller DJ, MacLeod CJ et al (2006) Proceedings of integrated ocean drilling program, vol 304/305. College Station. doi: 10.2204/iodp.proc.304305.2006
  8. Bonatti E, Peyve A, Kepezhinskas P, Kurentsova N, Seyler M, Skolotnev S, Udintsev G (1992) Upper mantle heterogeneity below the Mid-Atlantic Ridge, 0–15°N. J Geophys Res 97:4461–4476. doi: 10.1029/91JB02838 CrossRefGoogle Scholar
  9. Bonin B, Azzouni-Sekkal A, Bussy F, Ferrag S (1998) Alkali-calcic and alkaline post-orogenic (PO) granite magmatism: petrologic constraints and geodynamic settings. Lithos 45:45–70. doi: 10.1016/S0024-4937(98)00025-5 CrossRefGoogle Scholar
  10. Boschi C, Früh-Green GL, Delacour A, Karson JA, Kelley DS (2006) Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex, Atlantis Massif (MAR 30°N). Geochem Geophys Geosyst doi: 10.1029/2005GC001074
  11. Botcharnikov RE, Koepke J, Holtz F (2008) Experimental phase relations, mineral-melt equilibria and liquid lines of descent in a hydrous ferrobasalt—implications for the Skaargaard Intrusion and other natural systems. J Petrol 49:1687–1727. doi: 10.1093/petrology/egn043 CrossRefGoogle Scholar
  12. Brandon AD, Snow JE, Walker RJ, Morgan JW, Mock TD (2000) 190Pt/186Os and 187Re/187Os systematics of abyssal peridotites. Earth Planet Sci Lett 177:319–335. doi: 10.1016/S0012-821X(00)00044-3 CrossRefGoogle Scholar
  13. Cannat M, Casey JF (1995) An ultramafic lift at the Mid-Atlantic Ridge: successive stages of magmatism in serpentinized peridotite from the 15°N region. In: Vissers RLM, Nicolas A (eds) Mantle and lower crust exposed in oceanic ridges and in ophiolites. Kluwer Academic Publishers, Dordrecht, pp 5–34Google Scholar
  14. Cannat M, Chatin F, Whitechurch H, Ceuleneer G (1997a) Gabbroic rocks trapped in the upper mantle at the Mid-Atlantic Ridge. Proc Ocean Drill Prog Sci Results 153:243–264Google Scholar
  15. Cannat M, Lagabrielle Y, de Coutures N, Bougault H, Casey JF, Dmitriev L, Fouquet Y (1997b) Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: Geologic mapping in the 15°N region. Tectonophysics 279:193–214. doi: 10.1016/S0040-1951(97)00113-3 CrossRefGoogle Scholar
  16. Casey JF, Banerji D, Zarian P (2007) Leg 179 synthesis: geochemistry, stratigraphy, and structure of gabbroic rocks drilled in ODP Hole 1105A, Southwest Indian Ridge. In: Casey JF, Miller DJ (eds) Proceedings of ocean drilling program science results, vol 179. College Station. doi: 10.2973/
  17. Cavosie AJ, Kita NT, Valley JW (2009) Mantle oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. Am Mineral doi: 10.2138/am.2009.2982
  18. Cheadle MJ, John B, Lusk M, Wooden J (2008) Asymmetric spreading, and the construction of oceanic crust at the Kane oceanic core complex, vol 89, issue 53. Eos Trans American Geophysical Union, Fall Meeting 2008, abstract no. T41D-04Google Scholar
  19. Chen YD, Williams IS (1990) Zircon inheritance in mafic inclusions from Bega Batholith granites, southeastern Australia: an ion microprobe study. J Geophys Res 95:17787–17796. doi: 10.1029/JB095iB11p17787 CrossRefGoogle Scholar
  20. Claiborne L, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral Mag 70:517–543. doi: 10.1180/0026461067050348 CrossRefGoogle Scholar
  21. Coogan LA, Hinton RW (2006) Do the trace element compositions of detrital zircons require Hadean continental crust? Geology 34:633–636. doi: 10.1130/G22737.1 CrossRefGoogle Scholar
  22. Coogan LA, Wilson RN, Gillis KM, MacLeod CJ (2001) Near-solidus evolution of oceanic gabbros: Insights from amphibole geochemistry. Geochim Cosmochim Acta 65:4339–4357. doi: 10.1016/S0016-7037(01)00714-1 CrossRefGoogle Scholar
  23. Corfu F, Hanchar JM, Hoskin PWO, Kinney P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500. doi: 10.2113/0530469 CrossRefGoogle Scholar
  24. Cotsonika LA, Perfit MR, Smith MC, Kamenov G, Stakes D, Ridley WI, Wallace P (2005) Petrogenesis of andesites and dacites from the southern Juan de Fuca Ridge, vol 86, issue 18. Eos Trans American Geophysical Union, Fall Meeting 2005, abstract no. V13B-0551Google Scholar
  25. DeLong SE, Chatelain C (1990) Trace-element constraints on accessory-phase saturation in evolved MORB magma. Earth Planet Sci Lett 101:206–215. doi: 10.1016/0012-821X(90)90154-P CrossRefGoogle Scholar
  26. Dick HJB, Natland JH, Alt JC, Bach W et al (2000) A long in situ section of lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179:31–51. doi: 10.1016/S0012-821X(00)00102-3 CrossRefGoogle Scholar
  27. Dosso L, Bougault H, Joron JL (1993) Geochemical morphology of the north Mid-Atlantic Ridge, 10–24°N, trace element isotope complementarity. Earth Planet Sci Lett 120:443–462. doi: 10.1016/0012-821X(93)90256-9 CrossRefGoogle Scholar
  28. Ewing RC, Meldrum A, Wang L, Weber WJ, Corrales R (2003) Radiation effects in zircon. Rev Mineral Geochem 53:215–241. doi: 10.2113/0530387 CrossRefGoogle Scholar
  29. Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437. doi: 10.1007/s00410-007-0201-0 CrossRefGoogle Scholar
  30. Fu B, Page FZ, Cavosie AJ, Fournelle J, Kita NT, Lackey JS, Wilde SA, Valley JW (2008) Ti-in-zircon thermometry: applications and limitations. Contrib Mineral Petrol. doi: 10.1007/soo410-008-0281-5
  31. Fujiwara T, Lin J, Matsumoto T, Kelemen PB, Tucholke BE, Casey JF (2003) Crustal Evolution of the mid-Atlantic Ridge near the Fifteen-Twenty Fracture Zone in the last 5 Ma. Geochem Geophys Geosyst. doi:  1029/2002GC000364
  32. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50. doi: 10.2113/gselements.3.1.43 CrossRefGoogle Scholar
  33. Gillis KM (1996) Rare Earth element constraints on the origin of amphibole in gabbroic rocks from Site 896, Hess Deep. Proc Ocean Drill Prog Sci Results 147:59–75Google Scholar
  34. Grimes CB (2008) Duration, rates, and patterns of crustal growth at slow-spreading mid-ocean ridges: using zircon to investigate the evolution of in situ ocean crust. Ph.D. Dissertation, University of WyomingGoogle Scholar
  35. Grimes CB, John BE, Kelemen PB, Mazdab F, Wooden JL, Cheadle MJ, Hanghøj K, Schwartz JJ (2007) The trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35:643–646. doi: 10.1130/G23603A.1 CrossRefGoogle Scholar
  36. Grimes CB, John BE, Cheadle MJ, Wooden JL (2008) Protracted construction of gabbroic crust at a slow-spreading ridge: constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole U1309D (30ºN MAR). Geochem Geophys Geosyst. doi: 10.1029/2008GC002063
  37. Halden NM, Hawthorne FC, Campbell JL, Teesdale WJ, Maxwell JA, Higuchi D (1993) Chemical characterization of oscillatory zoning in overgrowths in zircon using 3 MeV μ-PIXE. Can Mineral 31:637–647Google Scholar
  38. Hanchar JM, Hoskin PWO (1998) Mudtank carbonatite, Australia, zircon. Society for luminescence microscopy and spectroscopy newsletter, vol 10, pp 2–3Google Scholar
  39. Hanchar JM, Miller CF (1993) Zircon zonation patterns as revealed by cathodoluminscence and backscattered electron images: implications for interpretation of complex crustal histories. Chem Geol 110:1–13. doi: 10.1016/0009-2541(93)90244-D CrossRefGoogle Scholar
  40. Hanchar JM, van Westrenen W (2007) Rare earth element behavior in zircon-melt systems. Elements 3:37–42. doi: 10.2113/gselements.3.1.37 CrossRefGoogle Scholar
  41. Harrison TM, Blichert-Toft J, Müller W, Albarede F, Holden P, Mojsis SJ (2005) Heterogeneous Hadean hafnium: Evidence of continental crust at 4.4 to 4.5 Ga. Science 310:1947–1950. doi: 10.1126/science.1117926 CrossRefGoogle Scholar
  42. Harvey J, Gannoun A, Burton KW, Rogers NW, Alard O, Parkinson IJ (2006) Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet Sci Lett 244:606–621. doi: 10.1016/j.epsl.2006.02.031 CrossRefGoogle Scholar
  43. Hayden LA, Watson EB (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. Earth Planet Sci Lett 258:561–568. doi: 10.1016/j.epsl.2007.04.020 CrossRefGoogle Scholar
  44. Heaman LM, Bowins R, Crocket J (1990) The chemical composition of igneous zircon suites: implications for geochemical tracer studies. Geochim Cosmochim Acta 54:1597–1607. doi: 10.1016/0016-7037(90)90394-Z CrossRefGoogle Scholar
  45. Hellebrand E, Moeller V, Whitehouse M, Cannat M (2007) Formation of oceanic zircons. Geochim Cosmochim Acta 71(Suppl 1):A391Google Scholar
  46. Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalt xenoliths. Geochim Cosmochim Acta 55:3287–3302. doi: 10.1016/0016-7037(91)90489-R CrossRefGoogle Scholar
  47. Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648. doi: 10.1016/j.gca.2004.07.006 CrossRefGoogle Scholar
  48. Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28:627–630. doi: 10.1130/0091-7613(2000)28<627:REECOZ>2.0.CO;2 CrossRefGoogle Scholar
  49. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62. doi: 10.2113/0530027 CrossRefGoogle Scholar
  50. Hoskin PWO, Kinny PD, Wyborn D (1998) Chemistry of hydrothermal zircon: investigating timing and nature of water–rock interaction. In: Arehart GB, Hulston JR, Balkema AA (eds) Water rock interaction, vol 9. AA Balkema, Rotterdam, pp 545–548Google Scholar
  51. Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. J Petrol 41:1365–1396. doi: 10.1093/petrology/41.9.1365 CrossRefGoogle Scholar
  52. Ireland TR, Williams IS (2003) Considerations in zircon geochronology by SIMS. Rev Mineral Geochem 53:215–241. doi: 10.2113/0530215 CrossRefGoogle Scholar
  53. John BE, Foster DA, Murphy JM, Cheadle MJ, Baines AG, Fanning M, Copeland P (2004) Determining the cooling history of in situ lower oceanic crust—Atlantis Bank, SW Indian Ridge. Earth Planet Sci Lett 222:145–160. doi: 10.1016/j.epsl.2004.02.014 CrossRefGoogle Scholar
  54. Jöns N, Bach W, Schroeder T (2009) Formation and alteration of plagiogranites in an ultramafic-hosted detachment fault at the Mid-Atlantic Ridge (ODP Leg 209). Contrib Mineral Petrol. doi: 10.1007/s00410-008-0357-2
  55. Kaczmarek M-A, Müntener O, Rubatto D (2008) Trace element chemistry and U–Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps). Contrib Mineral Petrol 155:295–312. doi: 10.1007/s00410-007-0243-3 CrossRefGoogle Scholar
  56. Kelemen PB, Kikawa E, Miller DJ et al (2004) Proceedings of ocean drilling program, initial reports 209, College Station. doi: 10.2973/
  57. Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within deep oceanic crust by hydrous partial melting of gabbros. Contrib Mineral Petrol 153:67–84. doi: 10.1007/s00410-006-0135-y CrossRefGoogle Scholar
  58. Konzett J, Armstrong RA, Sweeny RJ, Compston W (1998) The timing of MARID suite metasomatism in the Kaapvaal mantle: an ion probe study of zircons from MAARID xenoliths. Earth Planet Sci Lett 160:133–145CrossRefGoogle Scholar
  59. Korotev RL (1996) A self-consistent compilation of elemental concentration data for 93 geochemical reference samples. Geostand News 20:217–245CrossRefGoogle Scholar
  60. Kreston P, Fels P, Berggren G (1975) Kimberlitic zircons—a possible aid in prospecting for kimberlite. Mineral Deposita 10:47–56CrossRefGoogle Scholar
  61. Lissenberg CJ, Rioux M, Shimizu N, Bowring SA, Mével C (2009) Zircon dating of oceanic crustal accretion. Science doi: 10.1126/science.1169556
  62. Manning CE, Weston PE, Mahon KI (1999) Rapid high-temperature metamorphism of East Pacific Rise gabbros from Hess Deep. Earth Planet Sci Lett 144:123–132CrossRefGoogle Scholar
  63. Mattinson JM (1976) Ages of zircons from the Bay of Islands ophiolite complex, western Newfoundland. Geology 4:393–394CrossRefGoogle Scholar
  64. Mazdab FK, Wooden JL (2006) Trace element analysis in zircon by ion microprobe (SHRIMP-RG): Technique and applications. Geochim Cosmochim Acta 70(Suppl 1):A405CrossRefGoogle Scholar
  65. Moeller A, Hellebrand E, Whitehouse M, Cannat M (2006) Trace elements in young oceanic zircons, vol 87, issue 52. Eos Trans American Geophysical Union, Fall Meeting 2006, abstract no. V23E-0678Google Scholar
  66. Mukasa S, Ludden JN (1987) Uranium-lead isotopic ages of plagiogranites from the Troodos Ophiolite, Cyprus, and their tectonic significance. Geology 15:825–828CrossRefGoogle Scholar
  67. Nemchin AA, Whitehouse MJ, Pidgeon RT, Meyer C (2006) Oxygen isotope signature of 4.4-3.9 Ga zircons as a monitor of differentiation processes on the moon. Geochim Cosmochim Acta 70:1864–1872. doi: 10.1016/j.gca.2005.12.009 CrossRefGoogle Scholar
  68. Niu Y, Gilmore T, Mackie S, Greig A, Bach W (2002) Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. Proc Ocean Drill Prog Sci Results 176:1–60Google Scholar
  69. Pettke T, Audétat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal evolution in the W-Sn mineralized Mole Granite (NSW, Australia) Part II: evolving zircon and thorite trace element chemistry. Chem Geol 220:191–213CrossRefGoogle Scholar
  70. Pitcher WS (1997) The nature and origin of granites, 2nd edn. Chapman & Hall, LondonGoogle Scholar
  71. Puga E, Fanning CM, Nieto JM, Díaz de Federico A (2005) Recrystallization textures in zircon generated by ocean floor metamorphism and eclogite-facies metamorphism: a cathodoluminescence and U-Pb SHRIMP study, with constraints from REE elements. Can Mineral 43:183–202CrossRefGoogle Scholar
  72. Reddy SM, Timms NE, Trimby P, Kinny PD, Buchan C, Blake K (2006) Crystal-plastic deformation of zircon: a defect in the assumption of chemical robustness. Geology 34:257–260. doi: 10.1130/G22110.1 CrossRefGoogle Scholar
  73. Reed MJ, Candela PA, Piccoli PM (2000) The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800 degrees C and 200 MPa. Contrib Mineral Petrol 140:251–262CrossRefGoogle Scholar
  74. Robinson PT, Erzinger J, Emmermann R (2002) The composition and origin of igneous and hyrothermal veins in the lower ocean crust—ODP Hole 735B, Southwest Indian Ridge. Proc ODP Sci Results 176:1–66. doi: 10.2973/ Google Scholar
  75. Rubatto D, Gebauer D (2000) Use of cathodoluminescence for U-Pb zircon dating by ion microprobe: some examples from the Western Alps. In: Page M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 373–400Google Scholar
  76. Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241:38–61. doi: 10.1016/j.chemgeo.2007.01.027 CrossRefGoogle Scholar
  77. Rubin JN, Henry CD, Price JG (1989) Hydrothermal zircons and zircon overgrowths, Sierra Blanca Peaks, Texas. Am Mineral 74:865–869Google Scholar
  78. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophys Res 102:10039–10054CrossRefGoogle Scholar
  79. Sano Y, Terada K, Fukuoka T (2002) High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem Geol 184:217–230CrossRefGoogle Scholar
  80. Schaltegger U (2007) Hydrothermal zircon. Elements 3:51–79. doi: 10.2113/gselements.3.1.51 CrossRefGoogle Scholar
  81. Schroeder T, John BE (2004) Strain localization on an oceanic detachment fault system, Atlantis Massif, 30 degrees N, Mid-Atlantic Ridge. Geochem Geophys Geosyst 5. doi: 10.1029/2004GC000728
  82. Schulz B, Klemd R, Brätz H (2006) Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochim Cosmochim Acta 70:697–710. doi: 10.1016/j.gca.2005.10.001 CrossRefGoogle Scholar
  83. Schwartz J, John BE, Cheadle MJ, Miranda E, Grimes CB, Wooden J, Dick HJB (2005) Inherited zircon and the magmatic construction of oceanic crust. Science 310:654–657. doi: 10.1126/science.1116349 CrossRefGoogle Scholar
  84. Scoates JS, Chamberlain KR (1995) Baddelyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks of the Laramie anorthosite complex, Wyoming: petrologic consequences and U-Pb age. Am Mineral 80:1317–1327Google Scholar
  85. Seyler M, Lorand J-P, Dick HJB, Drouin M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15º20′N: ODP Hole 1274A. Contrib Mineral Petrol 153:303–319CrossRefGoogle Scholar
  86. Spandler CJ, Hermann J, Rubatto D (2004) Exsolution of thortveitite, yttrialite and xenotime during low temperature recrystallization of zircon and their significance for trace element incorporation in zircon. Am Mineral 89:1795–1806Google Scholar
  87. Speer JA (1982) Zircon. In Ribbe PH (ed) Orthosilicates. Rev Mineral 5:67–112Google Scholar
  88. Stoeser DB, Frost CD (2006) Nd, Pb, Sr, and O isotopic characterization of Saudi Arabian Shield terranes. Chem Geol 226:163–188CrossRefGoogle Scholar
  89. Stuckless JS, Vaughn RB, Van Trump G Jr (1986) Trace-element contents of postorogenic granites of the eastern Arabian Shield, Kingdom of Saudi Arabia. USGS Open File Report USGS-OF- 0:2–6Google Scholar
  90. Thomas JB, Bodnar RJ, Shimizu N, Sinha AK (2002) Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochim Cosmochim Acta 66:2887–2901CrossRefGoogle Scholar
  91. Tilton GR, Hopson W, Wright JE (1981) Uranium-lead isotopic ages of the Semail Ophiolite, Oman, with applications to Tethyan Ridge Tectonics. J Geophys Res 86:2763–2775CrossRefGoogle Scholar
  92. Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002. doi: 10.1093/petrology/egg067 CrossRefGoogle Scholar
  93. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation. Contrib Mineral Petrol 150:561–580. doi: 10.1007/s00410-005-0025-8 CrossRefGoogle Scholar
  94. Warren CJ, Parrish RR, Waters DJ, Searle MP (2005) Dating the geologic history of Oman’s Semail ophiolite: insights from U-Pb geochronology. Contrib Mineral Petrol 150:403–422. doi: 10.1007/s00410-005-0028-5 CrossRefGoogle Scholar
  95. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304CrossRefGoogle Scholar
  96. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308:841–844. doi: 10.1126/science.1110873 CrossRefGoogle Scholar
  97. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433. doi: 10.1007/s00410-006-0068-5 CrossRefGoogle Scholar
  98. Whitehouse MJ, Kamber BS (2002) On the overabundance of light rare earth elements in terrestrial zircon and its implications for Earth’s earliest magmatic differentiation. Earth Planet Sci Lett 204:333–346CrossRefGoogle Scholar
  99. Williams C, Tivey MA, Behn MD (2006) The magnetic structure of Kane Megamullion: results from marine magnetic anomalies, paleomagnetic data and thermal modeling, vol 87, issue 52. Eos Trans American Geophysical Union, Fall Meeting 2006, abstract no. T 2:03-4AGoogle Scholar
  100. Wooden JL, Mazdab FK, Barth AP, Miller CF, Lowery LE (2006) Temperatures (Ti) and compositional characteristics of zircon: early observations using high mass resolution on the USGS-Stanford SHRIMP-RG. Geochim Cosmochim Acta 70(Suppl 1):A707Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Craig B. Grimes
    • 1
    • 4
    Email author
  • Barbara E. John
    • 1
  • Michael J. Cheadle
    • 1
  • Frank K. Mazdab
    • 2
  • Joseph L. Wooden
    • 2
  • Susan Swapp
    • 1
  • Joshua J. Schwartz
    • 3
  1. 1.Department of Geology and GeophysicsUniversity of WyomingLaramieUSA
  2. 2.U.S.G.S.-Stanford Ion Microprobe LaboratoryStanfordUSA
  3. 3.Department of Geological SciencesUniversity of AlabamaTuscaloosaUSA
  4. 4.Department of Geology and GeophysicsUniversity of WisconsinMadisonUSA

Personalised recommendations