Construction of the granitoid crust of an island arc part I: geochronological and geochemical constraints from the plutonic Kohistan (NW Pakistan)

  • Oliver E. Jagoutz
  • J.-P. Burg
  • S. Hussain
  • H. Dawood
  • T. Pettke
  • T. Iizuka
  • S. Maruyama
Original Paper


We present major and trace element analyses and U–Pb zircon intrusion ages from I-type granitoids sampled along a crustal transect in the vicinity of the Chilas gabbronorite of the Kohistan paleo-arc. The aim is to investigate the roles of fractional crystallization of mantle-derived melts and partial melting of lower crustal amphibolites to produce the magmatic upper crust of an island arc. The analyzed samples span a wide calc-alkaline compositional range (diorite–tonalite–granodiorite–granite) and have typical subduction-related trace element signatures. Their intrusion ages (75.1 ± 4.5–42.1 ± 4.4 Ma) are younger than the Chilas Complex (~85 Ma). The new results indicate, in conjunction with literature data, that granitoid formation in the Kohistan arc was a continuous rather than punctuated process. Field observations and the presence of inherited zircons indicate the importance of assimilation processes. Field relations, petrographic observations and major and trace element compositions of the granitoid indicate the importance of amphibole fractionation for their origin. It is concluded that granitoids in the Kohistan arc are derivative products of mantle derived melts that evolved through amphibole-dominated fractionation and intra crustal assimilation.


Partial Melting Continental Crust Lower Crust Fractional Crystallization Incompatible Trace Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The Swiss National Science Foundation supported OJ`s and JPB`s work (grants NF 20-49372.96 and NF 20-61465.00). OJ thanks the hospitality of the Tokyo Institute of Technology for support during an extended visit supported by Tokyo Tech Award of ETH Zurich. Discussion with Othmar Müntener, Matt Rioux and Tim Grove are highly appreciated. Extremely helpful, detailed reviews by Tom Sisson and an anonymous reviewer greatly clarified and improved the paper.

Supplementary material

410_2009_408_MOESM1_ESM.xls (5.1 mb)
Supplemenatary Table (XLS 5.10 MB)
410_2009_408_MOESM2_ESM.doc (58 kb)
Supplementary material (DOC 58 kb)


  1. Alonso-Perez R, Müntener O, Ulmer P (2009) Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on H2O undersaturated andesitic liquids: Contrib Mineral Petrol 157:541–558CrossRefGoogle Scholar
  2. Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539CrossRefGoogle Scholar
  3. Arbaret L (2000) Pre-collisional anastomosing shear zones in the Kohistan Arc, NW Pakistan. In: Khan MA, Treloar Peter J, Searle Michael P, Jan MQ (eds) Tectonics of the Nanga Parbat syntaxis and the western Himalaya. Geological Society of London, LondonGoogle Scholar
  4. Arculus RJ, Wills KJA (1980) The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc. J Petrol 21(4):743–799Google Scholar
  5. Baker PE (1968) Comparative volcanology and petrology of the Atlantic island arcs. Bull Volcanol 32:189–206CrossRefGoogle Scholar
  6. Bard JP (1983) Metamorphism of an obducted island arc: example of the Kohistan Sequence (Pakistan) in the Himalayan collided range. Earth Planet Sci Lett 65(1):133–144CrossRefGoogle Scholar
  7. Beard JS, Lofgren GE (1991) Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb. J Petrol 32(2):365–401Google Scholar
  8. Bignold SM, Treloar PJ (2003) Northward subduction of the Indian Plate beneath the Kohistan island arc, Pakistan Himalaya: new evidence from isotopic data. J Geol Soc 160:377–384CrossRefGoogle Scholar
  9. Bowen NL (1928) The evolution of the igneous rocks. Dover Publications, Inc., New YorkGoogle Scholar
  10. Burg JP (2005) Shear strain localization from the upper mantle to the middle crust of the Kohistan Arc (Pakistan). In: Bruhn D, Burlini L (eds) High-strain zones: structure and physical properties. Special Publications. Geological Society, London, pp 25–38Google Scholar
  11. Burg JP (2006) Two orogenic systems and a transform-transfer fault in the Himalayas: evidence and consequences. Earth Sci Front 13(4):27–46Google Scholar
  12. Burg JP, Jagoutz O, Hamid D, Hussain S (2006) Pre-collision tilt of crustal blocks in rifted island arcs: structural evidence from the Kohistan Arc. Tectonics 25(5):13. doi: 10.1029/2005TC001835 CrossRefGoogle Scholar
  13. Butt KA, Chaudry MN, Ashraf M (1980) An interpretation of petrotectonic assemblage west of W. Himalayan syntaxis in Dir district and adjoining areas, Northern Pakistan. Geol Bull Univ Peshawar 13:79–86Google Scholar
  14. Chaudhry MN, Hussain MS, Quamae N (1987) Geology and Petrography of Barwal-Dir_Bibor area (Toposheet No. 38M/16) Dir district, NWF Pakistan. Geol Bull Univ Punjab 22:143–152Google Scholar
  15. Clift PD et al (2000) Sedimentary and geochemical evolution of the Dras forearc basin, Indus Suture, Ladakh Himalaya, India. Geol Soc Am Bull 112(3):450–466CrossRefGoogle Scholar
  16. Coward MP, Butler RWH, Asif KM, Knipe RJ (1987) The tectonic history of Kohistan and its implications for Himalayan structure. J Geol Soc London 144(3):377–391CrossRefGoogle Scholar
  17. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. Allen and Unwin, London, p 450Google Scholar
  18. DeBari SM, Sleep NH (1991) High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska; implications for primary magmas and the nature of arc crust. Geol Soc Am Bull 103(1):37–47CrossRefGoogle Scholar
  19. Dhuime B et al (2007) Multistage evolution of the Jijal ultramafic-mafic complex (Kohistan, N Pakistan): implications for building the roots of island arcs. Earth Planet Sci Lett. doi: 10.1016/j.epsl.2007.06.026
  20. Dufek J, Bergantz GW (2005) Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of the basalt–crust interaction. J Petrol 46(11):2167–2195CrossRefGoogle Scholar
  21. Garrido CJ et al (2006) Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (northern Pakistan); implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol 47(10):1873–1914CrossRefGoogle Scholar
  22. Green T (1972) Crystallization of calc-alkaline andesite under controlled high pressure hydrous conditions. Contrib Mineral Petrol 34:150–166CrossRefGoogle Scholar
  23. Green T (1992) Experimental phase equilibrium studies of garnet bearing I-type volcanics and high-level intrusives from Northland, New Zealand. Trans R Soc Edinburgh Earth Sci 83:429–438Google Scholar
  24. Green T, Ringwood AE (1968) Origin of garnet phenocrysts in calc-alkaline rocks. Contrib Mineral Petrol 18:163–174CrossRefGoogle Scholar
  25. Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich fluid component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N California. Contrib Mineral Petrol 142(4):375–396Google Scholar
  26. Grove TL et al (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145(5):515–533CrossRefGoogle Scholar
  27. Heuberger S et al (2007) Age and isotopic constraints on magmatism along the Karakoram-Kohistan Suture Zone, NW Pakistan: Evidence for subduction and continued convergence after India-Asia collision. Swiss J Geosci 24. doi: 10.1007/s00015-007-1203-7
  28. Holbrook WS, Lizarralde D, McGeary S, Bangs N, Diebold J (1999) Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27(1):31–34CrossRefGoogle Scholar
  29. Iizuka T, Hirata T (2004) Simultaneous determinations of U–Pb age and REE abundances for zircons using ArF excimer laser ablation-ICPMS. Geochem J 38(3):229–241Google Scholar
  30. Irvine GJ, Baragar WR (1971) A guide to the chemical classification of common volcanic rocks. Can J Earth Sci 8:523–548Google Scholar
  31. Jaeger JJ, Courtillot V, Tapponnier P (1989) Paleontological view of the ages of the Deccan Traps, the cretaceous/tertiary boundary, and the India–Asia collision. Geology (Boulder) 17(4):316–319CrossRefGoogle Scholar
  32. Jagoutz O (2009) Construction of the granitoid crust of an island arc part II: a quantitative petrogenetic model. Contrib Mineral Petrol (submitted)Google Scholar
  33. Jagoutz O, Müntener O, Burg J-P, Ulmer P, Jagoutz E (2006) Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan Island arc (NW Pakistan). Earth Planet Sci Lett 242(3–4):320–342CrossRefGoogle Scholar
  34. Jagoutz O, Müntener O, Ulmer P, Burg J-P, Pettke T (2007) Petrology and mineral chemistry of lower crustal intrusions: the chilas complex, Kohistan (NW Pakistan). J Petrol 48(10):1895–1953CrossRefGoogle Scholar
  35. Jan MQ, Howie RA (1981) The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal Complex, Kohistan, NW Pakistan. J Petrol 22(1):85–126Google Scholar
  36. Jan QM, Mian I (1971) Preliminary geology and petrography of Swat Kohistan. Geol Bull Univ Peshawar 6:1–32Google Scholar
  37. Jull M, Kelemen PB (2001) On the conditions for lower crustal convective instability. Journal of Geophysical Research, B. Solid Earth Planets 106(4):6423–6446CrossRefGoogle Scholar
  38. Kemp AIS et al (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315(5814):980–983CrossRefGoogle Scholar
  39. Khan MA, Jan MQ, Windley BF, Tarney J, Thirlwall MF et al (1989) The Chilas mafic-ultramafic igneous complex; the root of the Kohistan island arc in the Himalaya of northern Pakistan. In: Malinconico Lawrence L Jr, Lillie Robert J (eds) Tectonics of the western Himalayas. Special Paper: Geological Society of America. Geological Society of America (GSA), Boulder, pp 75–94Google Scholar
  40. Khan MA, Jan MQ, Weaver BL (1993) Evolution of the lower arc crust in Kohistan, N. Pakistan; temporal arc magmatism through early, mature and intra-arc rift stages. In: Treloar PJ, Searle MP (eds) Himalayan tectonics. Geological Society Special Publications. Geological Society of London, London, pp 123–138Google Scholar
  41. Khan SD, Walker DJ, Hall SA, Burke KC, Shah MT, Stockli L (2008) Did Kohistan-Ladakh island arc collide first with India? Geol Soc Am Bull 121(3–4):366–384Google Scholar
  42. Lee C-TA, Cheng X, Horodyskyj U (2006) The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights from the Sierra Nevada. Contrib Mineral Petrol 151:222–242CrossRefGoogle Scholar
  43. Ludwig KR (2000) Isoplot/Ex version 2.4. A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Centre Special Publication, p 56Google Scholar
  44. Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites; an experimental study. Contrib Mineral Petrol 141(6):643–658Google Scholar
  45. O’Connor J (1965) A classification for quartz-rich igneous rocks based on feldspar ratios. US Geological Survey Professional Paper 525-B:B79–B84Google Scholar
  46. Paterson Scott R, Vernon Ron H, Tobisch Othmar T (1989) A review of criteria for the identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11(3):349–363CrossRefGoogle Scholar
  47. Perfit MR, Brueckner H, Lawrence JR, Kay RW (1980) Trace-element and isotopic variations in a zoned pluton and associated volcanic-rocks, Unalaska Island, Alaska: a model for Fractionation in the Aleutian Calcalkaline Suite. Contrib Mineral Petrol 73(1):69–87CrossRefGoogle Scholar
  48. Petterson MG, Windley BF (1985) Rb-Sr dating of the Kohistan arc-batholith in the Trans-Himalaya of North Pakistan, and tectonic implications. Earth Planet Sci Lett 74(1):45–57CrossRefGoogle Scholar
  49. Petterson MG, Windley BF (1986) Petrological and geochemical evolution of the Kohistan arc-batholith, Gilgit, N Pakistan. Geol Bull Univ Peshawar 19:121–149Google Scholar
  50. Petterson MG, Windley BF (1991) Changing source regions of magmas and crustal growth in the Trans-Himalayas; evidence from the Chalt Volcanics and Kohistan Batholith, Kohistan, northern Pakistan. Earth Planet Sci Lett 102(3–4):326–341CrossRefGoogle Scholar
  51. Pidgeon RT (1992) Recrystallisation of oscillatory zoned zircon; some geochronological and petrological implications. Contrib Mineral Petrol 110(4):463–472CrossRefGoogle Scholar
  52. Pitcher WS (1997) The nature and origin of granite. Chapman & Hall, LondonGoogle Scholar
  53. Pons J, Oudin C, Valero J (1992) Kinematics of large syn-orogenic intrusions: example of the lower proterozoic Saraya Batholith (Eastern Senegal). Geol Rundsch 81(2):473–486CrossRefGoogle Scholar
  54. Pudsey CJ et al (1985) Collision zone between the Kohistan Arc and the Asian Plate in NW Pakistan. Trans R Soc Edinburgh Earth Sci 76(4):463–479Google Scholar
  55. Rapp RP, Watson EB, Miller CF (1991) Partial melting of Amphibolite Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Res 51(1–4):1–25CrossRefGoogle Scholar
  56. Ringuette L, Martignole J, Windley BF (1999) Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jijal Sequence (Kohistan Terrane, western Himalayas). Geology (Boulder) 27(2):139–142CrossRefGoogle Scholar
  57. Ringwood AE (1974) The petrological evolution of island arc systems (twenty-seventh William Smith lecture). J Geol Soc London 130(Part 3): 183–204Google Scholar
  58. Rudnick RL (1995) Making continental crust. Nature 378:571–578CrossRefGoogle Scholar
  59. Rudnick RL, Gao S et al (2003) The composition of the continental crust. In: Rudnick RL (ed) The crust. Treatise on geochemistry. Elsevier, Oxford, pp 1–64Google Scholar
  60. Schaltegger U, Zeilinger G, Frank M, Burg JP (2002) Multiple mantle sources during island arc magmatism; U–Pb and Hf isotopic evidence from the Kohistan arc complex, Pakistan. Terra Nova 14(6):461–468CrossRefGoogle Scholar
  61. Schaltegger U et al (2004) Crust-mantle interaction during Karakoram-Kohistan accretion (NW Pakistan). Goldschmidt 2004. Geochim. Cosmochim. Acta 68/11, CopenhagenGoogle Scholar
  62. Shand SJ (1943) Eruptive rocks. Wiley, LondonGoogle Scholar
  63. Sullivan MA, Windley BF, Saunders AD, Haynes JR, Rex DC (1993) A palaeogeographic reconstruction of the Dir Group; evidence for magmatic arc migration within Kohistan, N. Pakistan. In: Treloar PJ, Searle MP et al (eds) Himalayan tectonics. Geological Society Special Publications. Geological Society of London, London, pp 139–160Google Scholar
  64. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society Special Publications. Geological Society of London, London, pp 313–345Google Scholar
  65. Tahirkheli RAK (1979) Geology of Kohistan and adjoining Eurasia and Indio-Pakistan continents, Pakistan. Geol Bull Univ Peshawar 11:1–30Google Scholar
  66. Thirlwall MF et al (1994) High-field strength element anomalies in Arc Lavas: source or process. J Petrol 35(3):819–838Google Scholar
  67. Thompson AB, Connolly JAD (1995) Melting of the Continental-crust: some thermal and petrological constraints on anatexis in continental collision zones and other tectonic settings. J Geophys Res Solid Earth 100(B8):15565–15579CrossRefGoogle Scholar
  68. Treloar PJ et al (1989) K–Ar and Ar–Ar geochronology of the Himalayan collision in NW Pakistan; constraints on the timing of suturing, deformation, metamorphism and uplift. Tectonics 8(4):881–909CrossRefGoogle Scholar
  69. Treloar PJ, Petterson MG, Jan MQ, Sullivan MA (1996) A re-evaluation of the stratigraphy and evolution of the Kohistan Arc sequence, Pakistan Himalaya; implications for magmatic and tectonic arc-building processes. J Geol Soc London 153(Part 5): 681–693Google Scholar
  70. Weinberg RF, Dunlap WJ (2000) Growth and deformation of the Ladakh Batholith, Northwest Himalayas; implications for timing of continental collision and origin of calc-alkaline batholiths. J Geol 108(3):303–320CrossRefGoogle Scholar
  71. Whalen JB (1985) Geochemistry of an island-arc plutonic suite; the Uasilau-Yau Yau intrusive complex, New Britain, P.N.G. J Petrol 26(3):603–632Google Scholar
  72. Wilson M (1989) Igneous petrogenesis. Chapman & Hall, LondonCrossRefGoogle Scholar
  73. Wolf MB, Wyllie PJ (1991) Dehydration-melting of solid amphibolite at 10 Kbar: textural development, liquid interconnectivity and applications to the segregation of magmas. Mineral Petrol 44(3–4):151–179CrossRefGoogle Scholar
  74. Yamamoto H, Kobayashi K, Nakamura E, Kaneko Y, Kausar Allah B (2005) U–Pb zircon dating of regional deformation in the lower crust of the Kohistan Arc. Int Geol Rev 47:1035–1047CrossRefGoogle Scholar
  75. Zeilinger G (2002) Structural and geochronological study of the lowest Kohistan complex, Indus Kohistan region in Pakistan, NW Himalaya, Unpublished Ph.D., ETH ZurichGoogle Scholar
  76. Zeitler PK, Chamberlain CP, Smith HA (1993) Synchronous anatexis, metamorphism, and rapid denudation at Nanga Parbat (Pakistan Himalaya). Geology (Boulder) 21(4):347–350CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Oliver E. Jagoutz
    • 1
    • 2
  • J.-P. Burg
    • 1
  • S. Hussain
    • 3
  • H. Dawood
    • 3
  • T. Pettke
    • 4
  • T. Iizuka
    • 5
  • S. Maruyama
    • 6
  1. 1.Department of Earth SciencesETH and University ZurichZurichSwitzerland
  2. 2.Department of Earth, Atmospheric, and Planetary SciencesMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Pakistan Museum of Natural HistoryIslamabadPakistan
  4. 4.Department of Earth SciencesUniversity of BernBernSwitzerland
  5. 5.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia
  6. 6.Department of Earth and Planetary SciencesTokyo Institute of TechnologyTokyoJapan

Personalised recommendations