Advertisement

Peralkaline nephelinite–natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania

  • Roger H. MitchellEmail author
Original Paper

Abstract

This study presents petrographic and compositional data for coexisting peralkaline silicate glass and quenched natrocarbonatite melt in nepheline phenocrysts from the 24 September 2007 and July 2008 eruptions of the natrocarbonatite volcano Oldoinyo Lengai (Tanzania). Data are also given for peralkaline residual glass in combeite nephelinite ash clasts occurring in the March–April 2006 large volume natrocarbonatite flow. These data are considered to demonstrate the occurrence of liquid immiscibility between strongly peralkaline Fe-rich nephelinite melt and natrocarbonatite at Oldoinyo Lengai. Compositional data for coexisting silicate–carbonate pairs in conjunction with previous experimental studies suggest that the size of the field of liquid immiscibility for carbonated nephelinitic magmas is a function of their peralkalinity. It is shown that peralkaline combeite wollastonite nephelinite was present at Oldoinyo Lengai prior to, and during, the 24 September 2007 ash eruption. It is postulated that the driving force for this major eruption was assimilation and decomposition of previously emplaced solid natrocarbonatite. Assimilation resulted in the formation of the unusual hybrid nepheline–andradite–melilite–combeite–phosphate magma represented by the 24 September 2007 ash.

Keywords

Natrocarbonatite Peralkaline nephelinite Silicate glass Liquid immiscibility Assimilation Oldoinyo Lengai Tanzania 

Notes

Acknowledgments

This work is supported by the Natural Sciences and Engineering Council of Canada and Lakehead University. Dorobo Safaris of Arusha, Tanzania, are thanked for logistical assistance at Oldoinyo Lengai. Fred Belton is thanked for providing the sample of the July 2008 nephelinite. Barry Dawson and Jörg Keller are thanked for numerous discussions concerning the petrology of this unique volcano. Don Baker, John Gittins and an anonymous reviewer are thanked for comments on an initial draft of this paper.

References

  1. Bain JA, Morgan DJ (1969) The role of thermal analysis in the evaluation of impure clay deposits and mineral resources. Clay Miner 1969:171–192CrossRefGoogle Scholar
  2. Baker DR (2008) The fidelity of melt inclusions as records of melt composition. Contrib Mineral Petrol 156:377–395CrossRefGoogle Scholar
  3. Chadwick JP, Troll VR, Ginibre C, Morgan D, Gertisser R, Waight TE, Davidson JP (2007) Carbonate assimilation at MerapiVolcano, Java, Indonesia: insights from crystal isotope stratigraphy. J Petrol 48:1793–1812Google Scholar
  4. Dawson JB (1998) Peralkaline nephelinite–natrocarbonatite relationships at Oldoinyo Lengai, Tanzania. J Petrol 39:2077–2094CrossRefGoogle Scholar
  5. Dawson JB, Smith JV, Steel IM (1992) 1966 ash eruption of the carbonatite volcano Oldoinyo Lengai: mineralogy of lapilli and mixing of silicate and carbonate magmas. Mineral Mag 56:1–16CrossRefGoogle Scholar
  6. Dawson JB, Pinkerton H, Norton GE, Pyle DM, Browning P, Jackson D, Fallick AE (1995) Petrology and geochemistry of Oldoinyo Lengai lavas extruded in November 1988: magma source, ascent and crystallization. In: Bell K, Keller J (eds) Carbonatite volcanism. Springer, Berlin, pp 47–69Google Scholar
  7. Dawson JB, Pyle DM, Pinkerton H (1996) Evolution of natrocarbonatite from a wollastonite nephelinite parent: evidence from the June 1993 eruption of Oldoinyo Lengai, Tanzania. J Geol 104:41–54CrossRefGoogle Scholar
  8. De Vivo B, Lima A, Kamenetsky V, Danyushevsky LV (2006) Fluid and melt inclusions in sub-volcanic environments from volcanic systems: examples from the Neapolitan area and Pontine Islands, Italy. In: Webster JD (ed) Melt inclusions in plutonic rocks, vol 36. Mineralogical Association of Canada Short Course, Canada, pp 211–237Google Scholar
  9. Donaldson CH, Dawson JB, Kanaris-Sotiriou R, Batchelor RA, Walsh JN (1987) The silicate lavas of Oldoinyo Lengai, Tanzania. N Jahr Mineral Abhand 156:247–279Google Scholar
  10. Frezzotti ML (2001) Silicate melt inclusions in magmatic crocks: applications to petrology. Lithos 55:273–299CrossRefGoogle Scholar
  11. Jornson DR, Ross WA (1973) Gaylussite: thermal properties by simultaneous thermal analysis. Am Mineral 58:778–784Google Scholar
  12. Keller J, Krafft M (1990) Effusive natrocarbonatite activity at Oldoinyo Lengai, June 1988. Bull Volcanol 52:629–645CrossRefGoogle Scholar
  13. Keller J, Zaitsev AN, Wiedenmann D (2006) Primary magmas at Oldoinyo Lengai: the role of olivine melilitites. Lithos 91:150–172CrossRefGoogle Scholar
  14. Kervyn M, Klaudius J, Kelleer J, Kervyn F, Mattson HB, Belton F, Mbede E, Jacobs P, Eernst GG (2008) Voluminous lava flows at Oldoinyo Lengai in 2006: chronology of events and insights into the shallow magmatic system. Bull Volcanol 70:1069–1096CrossRefGoogle Scholar
  15. Kjarsgaard BA (1998) Phase relations of a carbonated high CaO nephelinite at 0.2 and 0.5 GPa. J Petrol 39:2061–2075CrossRefGoogle Scholar
  16. Kjarsgaard BA, Peterson TD (1991) Nephelinite–carbonatite liquid immiscibility at Shombole Volcano, East Africa: petrographic and experimental evidence. Mineral Petrol 43:293–314CrossRefGoogle Scholar
  17. Kjarsgaard BA, Hamilton DL, Peterson TD (1995) Peralkaline nephelinite/carbonatite liquid immiscibility: comparison of phase compositions in experiments and natural lavas from Oldoinyo Lengai. In: Bell K, Keller J (eds) Carbonatite volcanism. Springer, Berlin, pp 163–190Google Scholar
  18. Klaudius J, Keller J (2006) Peralkaline silicate lavas at Oldoinyo Lengai, Tanzania. Lithos 91:173–190CrossRefGoogle Scholar
  19. Marziano GI, Gailard F, Pichavani M (2008) Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contrib Mineral Petrol 155:719–738CrossRefGoogle Scholar
  20. Mitchell RH, Dawson JB (2007) The 24th September ash eruption of the carbonatite volcano Oldoinyo Lengai, Tanzania: mineralogy of the ash and implications for the formation of a new hybrid magma type. Mineral Mag 71:483–492CrossRefGoogle Scholar
  21. Peterson TD (1989a) Peralkaline nephelinites. I. Comparative petrology of Shombole and Oldoinyo L’engai, East Africa. Contrib Mineral Petrol 101:458–478CrossRefGoogle Scholar
  22. Peterson TD (1989b) Peralkaline nephelinites. II. Low pressure fractionation and the hypersodic lavas of Oldoinyo L’engai. Contrib Mineral Petrol 102:336–346CrossRefGoogle Scholar
  23. Petibon CM, Kjarsgaard BA, Jenner GA, Jackson SE (1998) Phase relationships pf a silicate-bearing natrocarbonatite from Oldoinyo Lengai at 20 and 100 MPa. J Petrol 39:2137–2151CrossRefGoogle Scholar
  24. Schiano P (2003) Primitive mantle magmas recorded as silicate melt inclusions in igneous minerals. Earth Sci Rev 63:121–144CrossRefGoogle Scholar
  25. Webster JD, Thomas R (2006) Silicate melt inclusions in felsic plutons: a synthesis and review. In: Webster JD (ed) Melt inclusions in plutonic rocks, vol 36. Mineralogical Association of Canada Short Course, Canada, pp 165–188Google Scholar
  26. Zaitsev AN, Keller J (2006) Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania. Lithos 91:191–207CrossRefGoogle Scholar
  27. Zaitsev AN, Keller J, Spratt J, Perova EN, Kearsley A (2008) Nyerereite–pirssonite–calcite–shortite relationship in altered natrocarbonatites, Oldoinyo Lengai, Tanzania. Can Mineral 46:843–860CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of GeologyLakehead UniversityThunder BayCanada

Personalised recommendations