Growth and deformation mechanisms of talc along a natural fault: a micro/nanostructural investigation

  • Cecilia VitiEmail author
  • Cristiano Collettini
Original Paper


This paper documents the occurrence of large amounts of talc within a continental normal fault. The talc-in reaction is deformation-enhanced and occurs by the interaction between dolostones and silica-rich hydrothermal fluids. In the high-strain, foliated fault core, talc forms an interconnected network of oriented (001) lamellae, 200–300 nm thick, locally associated with minor tremolite fibres, up to 300 nm in diameter. The talc structure is affected by several strain-induced defects, among which (001) interlayer delamination that produces talc “sublamellae” down to 10–30 nm thick. Micro/nanostructural observations definitely point to a predominant deformation mechanism of (001) frictional sliding, further enhanced by pervasive delamination that gives rise to an almost infinite number of possible sliding surfaces. These effects have fundamental implications in fault mechanics, resulting in significant fault weakening.


Talc Dolomite Deformation Interlayer delamination TEM Normal fault 


  1. Amouric M (1987) Growth and deformation defects in phyllosilicates as seen by HRTEM. Acta Crystallogr B 43:57–63CrossRefGoogle Scholar
  2. Anderson DL, Mogk DW, Childs JF (1990) Petrogenesis and timing of talc formation in the Ruby Range, southwestern Montana. Econ Geol 85:585–600CrossRefGoogle Scholar
  3. Banfield JF, Bailey SW, Barker WW, Smith RC (1995) Complex polytypism: relationships between serpentine structural characteristics and deformation. Am Mineral 80:1116–1131Google Scholar
  4. Barchi RM, Minelli G, Pialli G (1998) The crop 03 profile: a synthesis of results on deep structures of the northern Apennines. Mem Soc Geol Ital 52:383–400Google Scholar
  5. Bell IA, Wilson CJL, McLaren AC, Etheridge MA (1986) Kinks in mica: role of dislocations and (001) cleavage. Tectonophysics 127:49–65CrossRefGoogle Scholar
  6. Blount AM, Vassiliou AH (1989) The mineralogy and origin of the talc deposits near Winterboro, Alabama. Econ Geol 75:107–116CrossRefGoogle Scholar
  7. Bons AJ (1988) Deformation of chlorite in naturally deformed low-grade rocks. Tectonophysics 154:149–165. doi: 10.1016/0040-1951(88)90232-6 CrossRefGoogle Scholar
  8. Boschi C, Fruh-Green GL, Escartin J (2006) Occurrence and significance of serpentinite-hosted talc- and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes: an overview. Ofioliti 31:129–140Google Scholar
  9. Brady JB, Cheney JT, Rhodes AL, Vasquez A, Green C, Duvall M, Kogut A, Kaufman L, Kovaric D (1988) Isotope geochemistry of proterozoic talc occurrences in Archean marbles of the Ruby Mountains, southwest Montana, USA. Geol Mater Res 1:1–41Google Scholar
  10. Chiaraluce L, Chiarabba C, Collettini C, Piccinini D, Cocco M (2007) Architecture and mechanics of an active low-angle normal fault: Alto Tiberina Fault, northern Apennines, Italy. J Geophys Res 112:B10310. doi: 10.1029/2007JB005015 CrossRefGoogle Scholar
  11. Collettini C, Holdsworth RE (2004) Fault zone weakening and character of slip along low-angle normal faults: insights from the Zuccale fault, Elba, Italy. J Geol Soc London 161:1039–1051. doi: 10.1144/0016-764903-179 CrossRefGoogle Scholar
  12. Collettini C, Sibson RH (2001) Normal faults normal friction? Geology 29:927–930. doi: 10.1130/0091-7613(2001)029<0927:NFNF>2.0.CO;2 CrossRefGoogle Scholar
  13. Collettini C, De Paola N, Holdsworth RE, Barchi MR (2006) The development and behaviour of low-angle normal faults during cenozoic asymmetric extension in the northern Apennines, Italy. J Struct Geol 28:332–352. doi: 10.1016/j.jsg.2005.10.003 Google Scholar
  14. Cook SJ, Bowman JR (2000) Mineralogical evidence for fluid–rock interaction accompanying prograde contact metamorphism of siliceous dolomites: Alta Stock aureole, Utah, USA. J Petrol 41:739–757. doi: 10.1093/petrology/41.6.739 CrossRefGoogle Scholar
  15. D’Orazio M, Boschi C, Brunelli D (2004) Talc-rich hydrothermal rocks from the St. Paul and Conrad fracture zones in the Atlantic Ocean. Eur J Mineral 16:73–83. doi: 10.1127/0935-1221/2004/0016-0073 CrossRefGoogle Scholar
  16. Deino A, Keller JVA, Minelli G, Pialli G (1992) Datazioni 40Ar/39Ar dell’Unità di Ortano-Rio Marina (Isola d’Elba): risultati preliminari. Studi Geologici Camerti 2:187–192Google Scholar
  17. Duranti S, Palmeri R, Pertusati PC, Ricci CA (1992) Geological evolution and metamorphic petrology of the basal sequences of eastern Elba (complex II). Acta Vulcanol 2:213–229Google Scholar
  18. El-Sharkawy MF (2000) Talc mineralization of ultramafic affinity in the Eastern Desert of Egypt. Miner Deposit 35:346–363. doi: 10.1007/s001260050246 CrossRefGoogle Scholar
  19. Elter O, Giglia G, Tongiorgi M, Trevisan L (1975) Tensional and contractional areas in recent Tortonian to present evolution of the northern Apennines. Bollettino Geofisica Teorica ed Applicata 17:2–18Google Scholar
  20. Escartin J, Mevel C, MacLeod CJ, McCaig AM (2003) Constraints on deformation conditions and the origin of oceanic detachments: the Mid-Atlantic Ridge core complex at 15°45′N. Geochem Geophys Geosyst 4:1067. doi: 10.1029/2002GC000472 CrossRefGoogle Scholar
  21. Escartin J, Andreani M, Hirth G, Evans B (2008) Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures. Earth Planet Sci Lett 268:463–475. doi: 10.1016/j.epsl.2008.02.004 CrossRefGoogle Scholar
  22. Floyd JS, Mutter JC, Goodliffe AM, Taylor B (2001) Evidence for fault weakness and fluid flow within an active low-angle normal fault. Nature 411:779–783. doi: 10.1038/35081040 CrossRefGoogle Scholar
  23. Giese RF Jr (1975) Interlayer bonding in talc and pyrophyllite. Clays Clay Miner 23:165–166. doi: 10.1346/CCMN.1975.0230218 CrossRefGoogle Scholar
  24. Gordon TM, Greenwood HJ (1970) The reaction: dolomite + quartz + water = talc + calcite + carbon dioxide. Am J Sci 268:225–242Google Scholar
  25. Hecht L, Freiberger R, Gilg HA, Grundmann G, Kostitsyn YA (1999) Rare earth element and isotope (C, O, Sr) characteristics of hydrothermal carbonates: genetic implications for dolomite-hosted talc mineralization at Gopfersgrun (Fichtelgebirge, Germany). Chem Geol 155:115–130. doi: 10.1016/S0009-2541(98)00144-2 CrossRefGoogle Scholar
  26. Holdsworth RE (2004) Weak faults–rotten cores. Science 303:181–182. doi: 10.1126/science.1092491 CrossRefGoogle Scholar
  27. Holness MB (1992) Metamorphism and fluid infiltration of the calc-silicate aureole of the Beinn an Dubhaich granite, Skye. J Petrol 33:1261–1293Google Scholar
  28. Holness MB (1997) Fluid flow paths and mechanisms of fluid infiltration in carbonates during contact metamorphism: the Beinn an Dubhaich aureole, Skye. J Metamorph Geol 15:59–70CrossRefGoogle Scholar
  29. Imber J, Holdsworth RE, Butler CA, Strachan RA (2001) A reappraisal of the Sibson-Scholz fault model: the nature of the frictional to viscous (“brittle-ductile”) transition along a long-lived, crustal-scale fault, Outer Hebrides, Scotland. Tectonics 20:610–624. doi: 10.1029/2000TC001250 CrossRefGoogle Scholar
  30. Janecke SU, Evans JP (1988) Feldspar-influenced rock rheologies. Geology 16:1064–1067. doi: 10.1130/0091-7613(1988)016<1064:FIRR>2.3.CO;2 CrossRefGoogle Scholar
  31. Jolivet L, Faccenna C, Goffé B, Mattei M, Rossetti F, brunet C, Storti F, Funiciello R, Cadet JP, D’Agostino N, Parra T (1998) Midcrustal shear zones in postorogenic extension: example from the northern Tyrrhenian Sea. J Geophys Res 103:12123–12160. doi: 10.1029/97JB03616 CrossRefGoogle Scholar
  32. Keller VA, Coward MP (1996) The structure and evolution of the northern Tyrrenian Sea. Geol Mag 133:1–16. doi: 10.1016/0025-3227(96)00019-9 CrossRefGoogle Scholar
  33. Keller VA, Pialli G (1990) Tectonics of the Island of Elba: a reappraisal. Boll Soc Geol It 109:413–425Google Scholar
  34. Kogure T, Kameda J (2008) High-resolution TEM and XRD simulation of stacking disorder in 2:1 phyllosilicates. Z Kristallogr 223:69–75. doi: 10.1524/zkri.2008.0004 CrossRefGoogle Scholar
  35. Linder DE, Wylie AG, Candela PA (1992) Mineralogy and origin of the State Line talc deposit, Pennsylvania. Econ Geol 87:1607–1615CrossRefGoogle Scholar
  36. Mares VM, Kronenberg AK (1993) Experimental deformation of muscovite. J Struct Geol 15:1061–1075. doi: 10.1016/0191-8141(93)90156-5 CrossRefGoogle Scholar
  37. Merriman RJ, Roberts B, Peacor DR, Hirons SR (1995) Strain-related differences in the crystal growth of white mica and chlorite: a TEM and XRD study of the development of metapelitic microfabrics in the Southern Uplands thrust terrane, Scotland. J Metamorph Geol 13:559–576. doi: 10.1111/j.1525-1314.1995.tb00243.x CrossRefGoogle Scholar
  38. Metz P, Trommsdorff V (1968) On phase equilibria in metamorphosed siliceous dolomites. Contrib Mineral Petrol 18:305–309. doi: 10.1007/BF00399692 CrossRefGoogle Scholar
  39. Moine B, Fortune JP, Moreau P, Viguier F (1989) Comparative mineralogy, geochemistry and conditions of formation of two metasomatic talc and chlorite deposits: Trimouns (Pyrenees, France) and Rabenwald (Eastern Alps, Austria). Econ Geol 84:1398–1416CrossRefGoogle Scholar
  40. Moore DE, Lockner DA (2004) Crystallographic controls on the frictional behaviour of dry and water-saturated sheet structure minerals. J Geophys Res 109:B03401. doi: 10.1029/2003JB002582 CrossRefGoogle Scholar
  41. Moore DE, Lockner DA (2008) Talc friction in the temperature range 25°–400°C: relevance for fault-zone weakening. Tectonophysics 499:120–132. doi: 10.1016/j.tecto.2007.11.039 CrossRefGoogle Scholar
  42. Moore DE, Rymer MJ (2007) Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448:795–797CrossRefGoogle Scholar
  43. Nkoumbou C, Villieras F, Njopwouo D, Ngoune CY, Barres O, Pelletier M, Razafitianamaharavo A, Yvon J (2007) Physicochemical properties of talc ore from three deposits of Lamal Pougue area (Yaounde Pan-African Belt, Cameroon), in relation to industrial uses. Appl Clay Sci 41:113–132. doi: 10.1016/j.clay.2007.10.006 CrossRefGoogle Scholar
  44. Olives Banos J, Amouric M, De Fouchet C, Baronnet A (1983) Interlayering and interlayer slip in biotite as seen by HRTEM. Am Mineral 68:754–758Google Scholar
  45. Puhan D (1988) Reverse age relations of talc and tremolite deduced from reation textures in metamorphosed siliceous dolomites of the southern Damara Orogen (Namibia). Contrib Mineral Petrol 98:24–27. doi: 10.1007/BF00371905 CrossRefGoogle Scholar
  46. Puhan D (1995) Metamorphic evolution of the assemblage tremolite + talc + calcite + dolomite + quartz within a sample of siliceous dolomite from southern Damara Orogen (Namibia). Contrib Mineral Petrol 120:180–185. doi: 10.1007/BF00287115 CrossRefGoogle Scholar
  47. Puhan D, Hoffer E (1973) Phase relations of talc and tremolite in metamorphic calcite-dolomite sediments in the southern portion of the Damara Belt (South West Africa). Contrib Mineral Petrol 40:207–214. doi: 10.1007/BF00373785 CrossRefGoogle Scholar
  48. Ramsay JG, Huber MI (1983) The techniques of modern structural geology, vol 1. Strain analysis. Academic, LondonGoogle Scholar
  49. Rocchi S, Westerman DS, Dini A, Innocenti F, Tonarini S (2002) Two-stage growth pf laccoliths at Elba Island, Italy. Geology 30:983–986. doi: 10.1130/0091-7613(2002)030<0983:TSGOLA>2.0.CO;2 CrossRefGoogle Scholar
  50. Saupé F, Marignac C, Moine B, Sonet J, Zimmerman JL (1982) Datation par les methods K/Ar et Rb/Sr de quelques roches de la partie orientale de l’ile d’Elbe, Province de Livourne, Italie. Bull Mineralogie 105:236–245Google Scholar
  51. Secor DT (1965) Role of fluid pressure in jointing. Am J Sci 263:633–640Google Scholar
  52. Shin D, Lee I (2002) Carbonate-hosted talc deposits in the contact aureole of an igneous interusion (Hwanggangri mineralised zone, South Korea): geochemistry, phase relationships and stable isotope studies. Ore Geol Rev 22:17–39. doi: 10.1016/S0169-1368(02)00085-9 CrossRefGoogle Scholar
  53. Sibson RH (1985) A note on fault reactivation. J Struct Geol 7:751–754. doi: 10.1016/0191-8141(85)90150-6 CrossRefGoogle Scholar
  54. Smith SAF, Holdsworth RE, Collettini C, Imber J (2007) Using footwall structures to constrain the evolution of low-angle normal faults. J Geol Soc 164:1187–1192. doi: 10.1144/0016-76492007-009 CrossRefGoogle Scholar
  55. Spear FS (1993) Metamorphic phase equilibria and pressure–temperature time paths. Mineralogical Society of America, Washington, p 799Google Scholar
  56. Tornos F, Spiro BF (2000) The geology and isotope geochemistry of the talc deposits of Puebla de Lillo (Cantabrian Zone, Northern Spain). Econ Geol 95:1277–1296. doi: 10.2113/95.6.1277 CrossRefGoogle Scholar
  57. Trevisan L (1950) L’Elba orientale e la sua tettonica di scivolamento per gravità. Mem Ist Geologico Universita Padova 16:1–30Google Scholar
  58. Trevisan L, Marinelli G, Barberi F, Giglia G, Innocenti F, Raggi G, Squarci P, Taffi L, Ricci CA (1967) Carta Geologica dell’Isola d’Elba. Scala 1:25.000. Consiglio Nazionale delle Ricerche, Gruppo di Ricerca per la Geologia dell’Appennino centro-settentrionale e della Toscana, PisaGoogle Scholar
  59. Veblen DR, Buseck PR (1980) Microstructures and reaction mechanisms in biopyriboles. Am Mineral 65:599–623Google Scholar
  60. Viti C, Hirose T (2008) Dehydration reactions and micro/nanostructures in experimentally deformed serpentinites. Contrib Mineral Petrol (online)Google Scholar
  61. Viti C, Mellini M, Rumori C (2005) Exsolution and hydration of pyroxenes from partially-serpentinized harzburgites. Mineral Mag 69:491–500CrossRefGoogle Scholar
  62. Wibberley C (2007) Talc at fault. Nature 448:756–757. doi: 10.1038/448756a CrossRefGoogle Scholar
  63. Widmer Th (1991) Zur Stratigraphie und Sedimentologie der Anhydritgruppe (Mittlere Trias) in der Region Liestal-Arisdorf (Baselland, Nordwestschweiz). Beitr Geol Schweiz Geotechn Serie 79:107Google Scholar
  64. Wintsch RP, Christoffersen R, Kronenberg AK (1995) Fluid–rock reaction weakening of fault zones. J Geophys Res 100:13021–13032. doi: 10.1029/94JB02622 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Dipartimento di Scienze della TerraUniversity of SienaSienaItaly
  2. 2.Geologia Strutturale e Geofisica, Dipartimento di Scienze della TerraUniversity of PerugiaPerugiaItaly

Personalised recommendations