The Mammoth Peak sheeted complex, Tuolumne batholith, Sierra Nevada, California: a record of initial growth or late thermal contraction in a magma chamber?

  • Jiří Žák
  • Scott R. Paterson
  • Vojtěch Janoušek
  • Petr Kabele
Original Paper

Abstract

The Mammoth Peak sheeted intrusive complex formed in the interior of a ~7–10 km deep magma chamber, specifically in the Half Dome granodiorite of the Tuolumne batholith, central Sierra Nevada, CA (USA). The sheets consist of fractionated melts with accumulated hornblende, biotite, magnetite, titanite, apatite, and zircon. The accumulation, especially of titanite, had a profound effect on minor and trace elements (Nb, Ta, Ti, REE, U, Th, P, Zr, Hf, etc.), increasing their contents up to five to six times. Our thermal–mechanical modeling using the finite element method shows that cooling-generated tensile stresses resulted in the inward propagation of two perpendicular sets of dilational cracks in the host granodiorite. We interpret the sheeted complex to have formed by a crack-seal mechanism in a high strength, crystal-rich mush, whereby outward younging pulses of fractionated magma were injected into these syn-magmatic cracks at the margin of an active magma chamber. Thermal–mechanical instabilities developed after the assembly of the sheeted complex, which was then overprinted by late ~NW–SE magmatic foliation. This case example provides a cautionary note regarding the interpretation that sheeted zones in large granitoid plutons imply a diking mechanism of growth because the sheeted/dike complexes in plutons (1) may display inverse growth directions from the growth of the overall intrusive sequence; (2) need not record initial chamber construction and instead may reflect late pulsing of magma within an already constructed magma chamber; (3) have an overprinting magmatic fabric indicating the continued presence of melt after construction of sheeted complexes and thus a prolonged thermal history as compared to dikes; and (4) because the scale of the observed sheeted complexes may be small (<1%) in comparison to large homogenous parts of plutons, in which there is no evidence for sheeting or diking. Thus, where extensive dike complexes in plutons are absent, such as in much of the Tuolumne batholith, the application of an incremental diking model to explain chamber construction is at best speculative.

Keywords

Emplacement Granite Incremental growth Magma chamber Pluton Thermal–mechanical modeling 

Notes

Acknowledgments

We thank the two anonymous reviewers for their helpful comments, which assisted in improving the original manuscript. This study was completed during the post-doctoral research of Jiří Žák, supported by the post-doctoral grant of the Grant Agency of the Czech Republic No. 205/07/P226. We also acknowledge the financial support from the Czech Academy of Sciences Grant No. KJB3111403 (to Jiří Žák), and the Ministry of Education, Youth and Sports of the Czech Republic Research Plans No. MSM0021620855 and No. MSM6840770003 (to Petr Kabele). Scott Paterson acknowledges support from NSF Grants EAR-0537892 and EAR-0073943. The short visit by Vojtěch Janoušek to the Division of Earth Sciences, University of Glasgow, Scotland (and the patience of Colin Braithwaite, in particular) made possible the acquisition of the CL photographs; Zdeněk Táborský (Czech Geological Survey, Prague) helped with petrographic studies. Last but not least, the Yosemite National Park Rangers are gratefully acknowledged for their constant support and interest in our work.

Supplementary material

410_2009_391_MOESM1_ESM.pdf (176 kb)
Supplementary material 1 (PDF 176 kb)

References

  1. Ague JJ, Brimhall GH (1988) Magmatic arc asymmetry and distribution of anomalous plutonic belts in the batholiths of California: effects of assimilation, crustal thickness, and depth of crystallization. Geol Soc Am Bull 100:912–927. doi:10.1130/0016-7606(1988)100<0912:MAAADO>2.3.CO;2 CrossRefGoogle Scholar
  2. Archanjo CJ, Fetter AH (2004) Emplacement setting of the granite sheeted pluton of Esperança (Brasiliano orogen, northeastern Brazil). Precambrian Res 135:193–215. doi:10.1016/j.precamres.2004.08.008 CrossRefGoogle Scholar
  3. Barbarin B (1991) Enclaves of the Mesozoic calc-alkaline granitoids of the Sierra Nevada Batholith, California. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 135–154Google Scholar
  4. Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177. doi:10.1016/j.lithos.2004.05.010 CrossRefGoogle Scholar
  5. Barbey P, Gasquet D, Pin C, Bourgeix AL (2008) Igneous banding, schlieren and mafic enclaves in calc-alkaline granites: the Budduso pluton (Sardinia). Lithos 104:147–163. doi:10.1016/j.lithos.2007.12.004 CrossRefGoogle Scholar
  6. Bartley JM, Glazner AF, Coleman DS (2005) Distinguishing pluton emplacement mechanisms. GSA Abstracts with Programs 37:38Google Scholar
  7. Bartley JM, Coleman DS, Glazner AF (2008) Incremental pluton emplacement by magmatic crack-seal. Trans R Soc Edinb Earth Sci 97:383–396Google Scholar
  8. Bateman PC (1992) Plutonism in the Central part of Sierra Nevada Batholith, California. USGS professional paper 1483, pp 1–186Google Scholar
  9. Bateman PC, Chappell BW (1979) Crystallization, fractionation, and solidification of the Tuolumne Intrusive Series, Yosemite National Park, California. Geol Soc Am Bull 90:465–482. doi:10.1130/0016-7606(1979)90<465:CFASOT>2.0.CO;2 CrossRefGoogle Scholar
  10. Bergantz GW (2000) On the dynamics of magma mixing by reintrusion: implications for pluton assembly processes. J Struct Geol 22:1297–1309. doi:10.1016/S0191-8141(00)00053-5 CrossRefGoogle Scholar
  11. Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114Google Scholar
  12. Bracciali L, Paterson SR, Memeti V, Rocchi S, Matzel J, Mundil R (2008) Build-up of the Tuolumne Batholith, California: the Johnson Granite Porphyry. LASI III Conference AbstractGoogle Scholar
  13. Brown EH, McClelland WC (2000) Pluton emplacement by sheeting and vertical ballooning in part of the southeast Coast Plutonic Complex, British Columbia. Geol Soc Am Bull 112:708–719. doi:10.1130/0016-7606(2000)112<0708:PEBSAV>2.3.CO;2 CrossRefGoogle Scholar
  14. Burgess SD, Miller JS (2008) Construction, solidification and internal differentiation of a large felsic arc pluton: Cathedral Peak granodiorite, Sierra Nevada Batholith. In: Annen C, Zellmer GF (eds) Dynamics of crustal magma transfer, storage and differentiation, vol 304. Geol Soc London, Special Publications, pp 203–234Google Scholar
  15. Čermák V, Huckenholz HG, Rybach L, Schmid R, Wohlenberg J (1982) Physical properties of rocks. In: Angenheiser M (ed) Landolt–Boernstein, Numerical data and functional relationships in Science and Technology, Group V: Geophysics and Space Research, pp 305–370Google Scholar
  16. Clarke DB, Clarke GKC (1998) Layered granodiorites at Chebucto Head, South Mountain batholith, Nova Scotia. J Struct Geol 20:1305–1324. doi:10.1016/S0191-8141(98)00067-4 CrossRefGoogle Scholar
  17. Clemens JD (1998) Observations on the origins and ascent mechanisms of granitic magmas. J Geol Soc London 155:843–851. doi:10.1144/gsjgs.155.5.0843 CrossRefGoogle Scholar
  18. Clemens JD, Mawer CK (1992) Granitic magma transport by fracture propagation. Tectonophysics 204:339–360. doi:10.1016/0040-1951(92)90316-X CrossRefGoogle Scholar
  19. Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436. doi:10.1130/G20220.1 Google Scholar
  20. Coleman DS, Bartley JM, Glazner AF, Law RD (2005) Incremental assembly and emplacement of Mesozoic plutons in the Sierra Nevada and White and Inyo Ranges, California. Geol Soc Am field trip guide, pp 1–59Google Scholar
  21. Decitre S, Gasquet D, Marignac C (2002) Genesis of orbicular granitic rocks from Ploumanac’h plutonic complex (Brittany, France); petrographical, mineralogical and geochemical constraints. Eur J Mineral 14:715–731. doi:10.1127/0935-1221/2002/0014-0715 CrossRefGoogle Scholar
  22. Didier J, Barbarin B (1991) The different types of enclaves in granites—nomenclature. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 19–24Google Scholar
  23. du Bray EA, Harlan SS (1996) The Eocene Big Timber Stock, south-central Montana; development of extensive compositional variation in an arc-related intrusion by side-wall crystallization and cumulate glomerocryst remixing. Geol Soc Am Bull 108:1404–1424. doi:10.1130/0016-7606(1996)108<1404:TEBTSS>2.3.CO;2 CrossRefGoogle Scholar
  24. Duke EF, Redden JA, Papike JJ (1988) Calamity Peak granite–pegmatite complex, Black Hills, South Dakota: Part I Structure and emplacement. Geol Soc Am Bull 100:825–840. doi:10.1130/0016-7606(1988)100<0825:CPLGPC>2.3.CO;2 CrossRefGoogle Scholar
  25. Fowler TJ (1994) Sheeted and bulbous pluton intrusion mechanisms of a small granitoid from Southeastern Australia—implications for dyke-to-pluton transformation during emplacement. Tectonophysics 234:197–215. doi:10.1016/0040-1951(94)90211-9 CrossRefGoogle Scholar
  26. Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11. doi:10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2 CrossRefGoogle Scholar
  27. Glazner AF, Coleman DS, Bartley JM (2008) The tenuous connection between high-silica rhyolites and granodiorite plutons. Geology 36:183–186. doi:10.1130/G24496A.1 CrossRefGoogle Scholar
  28. Grant JA (1986) The isocon diagram—a simple solution to Gresens equation for metasomatic alteration. Econ Geol 81:1976–1982CrossRefGoogle Scholar
  29. Grant JA (2005) Isocon analysis: a brief review of the method and applications. Phys Chem Earth 30:997–1004Google Scholar
  30. Gray W, Glazner AF, Coleman DS, Bartley JM (2008) Long-term geochemical variability of the Late Cretaceous Tuolumne Intrusive Suite, central Sierra Nevada, California. In: Annen C, Zellmer GF (eds) Dynamics of crustal magma transfer, storage and differentiation, vol 304. Geol Soc London, Special Publications, pp 183–201Google Scholar
  31. Gresens RL (1967) Composition–volume relationships of metasomatism. Chem Geol 2:47–55. doi:10.1016/0009-2541(67)90004-6 CrossRefGoogle Scholar
  32. Gromet LP, Silver LT (1983) Rare earth element distribution among minerals in a granodiorite and their petrogenetic implications. Geochim Cosmochim Acta 47:925–939. doi:10.1016/0016-7037(83)90158-8 CrossRefGoogle Scholar
  33. Heuze FE (1983) High-temperature mechanical, physical and thermal properties of granitic rocks. A review. Int J Rock Mech Min Sci 20:3–10. doi:10.1016/0148-9062(83)91609-1 CrossRefGoogle Scholar
  34. Huber NK, Bateman PC, Wahrhafting C (1989) Geologic map of Yosemite National Park and vicinity, California, 1:125,000. US Geological Survey, map I-1874Google Scholar
  35. Hutchison CS (1975) The norm, its variations, their calculation and relationships. Schweiz Mineral Petrogr Mitt 55:243–256Google Scholar
  36. Hutton DHW (1982) A tectonic model for the emplacement of the Main Donegal Granite, NW Ireland. J Geol Soc London 139:615–631. doi:10.1144/gsjgs.139.5.0615 CrossRefGoogle Scholar
  37. Hutton DHW (1988) Igneous emplacement in a shear-zone termination: the biotite granite at Strontian, Scotland. Geol Soc Am Bull 100:1392–1399. doi:10.1130/0016-7606(1988)100<1392:IEIASZ>2.3.CO;2 CrossRefGoogle Scholar
  38. Hutton DHW (1992) Granite sheeted complexes: evidence for the dyking ascent mechanism. Trans R Soc Edinb Earth Sci 83:377–382Google Scholar
  39. Hutton DHW, Dempster TJ, Brown PE, Becker SD (1990) A new mechanism of granite emplacement: intrusion in active shear zones. Nature 343:452–455. doi:10.1038/343452a0 CrossRefGoogle Scholar
  40. Ingram GM, Hutton DHW (1994) The Great Tonalite Sill: emplacement into a contractional shear zone and implications for Late Cretaceous to early Eocene tectonics in southeastern Alaska and British Columbia. Geol Soc Am Bull 106:715–728. doi:10.1130/0016-7606(1994)106<0715:TGTSEI>2.3.CO;2 CrossRefGoogle Scholar
  41. Irvine TM, Baragar WR (1971) A guide to the chemical classification of common volcanic rocks. Can J Earth Sci 8:523–548Google Scholar
  42. Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543. doi:10.1093/petrology/41.4.511 CrossRefGoogle Scholar
  43. Janoušek V, Farrow CM, Erban V (2006) Interpretation of whole-rock geochemical data in igneous geochemistry: introducing Geochemical Data Toolkit (GCDkit). J Petrol 47:1255–1259. doi:10.1093/petrology/egl013 CrossRefGoogle Scholar
  44. Jerram DA, Cheadle MJ, Philpotts AR (2003) Quantifying the building blocks of igneous rocks: are clustered crystal frameworks the foundation? J Petrol 44:2033–2051. doi:10.1093/petrology/egg069 CrossRefGoogle Scholar
  45. Kistler RW, Fleck RJ (1994) Field guide for a transect of the Central Sierra Nevada, California: geochronology and isotope geology. USGS Open-File Report 94-267, pp 1–50Google Scholar
  46. Kistler RW, Chappell BW, Peck DL, Bateman PC (1986) Isotopic variation in the Tuolumne intrusive suite, central Sierra Nevada, California. Contrib Mineral Petrol 94:205–220. doi:10.1007/BF00592937 CrossRefGoogle Scholar
  47. Klein M, Stosch HG, Jeck HA (1997) Partitioning of HFSE and REE between amphibole and quartz dioritic to tonalitic melts: an experimental study. Chem Geol 138:257–271. doi:10.1016/S0009-2541(97)00019-3 CrossRefGoogle Scholar
  48. Lafrance B, John BE (2001) Sheeting and dyking emplacement of the Gunnison annular complex, SW Colorado. J Struct Geol 23:1141–1150. doi:10.1016/S0191-8141(00)00181-4 CrossRefGoogle Scholar
  49. Lama RD, Vutukuri VS (1978) Handbook on mechanical properties of rocks; testing techniques and results, Series on rock and soil mechanics 3, vol 1–3. Trans Tech Publications, 1162 ppGoogle Scholar
  50. Lindh A, Nasstrom H (2006) Crystallization of orbicular rocks exemplified by the Slattemossa occurrence, southeastern Sweden. Geol Mag 143:713–722. doi:10.1017/S001675680600210X CrossRefGoogle Scholar
  51. Mahan KH, Bartley JM, Coleman DS, Glazner AF, Carl BS (2003) Sheeted intrusion of the synkinematic McDoogle pluton, Sierra Nevada, California. Geol Soc Am Bull 115:1570–1582. doi:10.1130/B22083.1 CrossRefGoogle Scholar
  52. Martin H (1987) Petrogenesis of Archaean trondhjemites, tonalites, and granodiorites from eastern Finland: major and trace element geochemistry. J Petrol 28:921–953Google Scholar
  53. Matzel J, Mundil R, Miller J, Wooden J, Mazdab F, Paterson S, Memeti V (2007) Growth of the Tuolumne Batholith: zircon crystallization temperature, age and trace element data. Eos Trans AGU 88:V44C-08Google Scholar
  54. McNulty BA, Tong W, Tobisch OT (1996) Assembly of a dike-fed magma chamber: the Jackass Lakes pluton, central Sierra Nevada, California. Geol Soc Am Bull 108:926–940. doi:10.1130/0016-7606(1996)108<0926:AOADFM>2.3.CO;2 CrossRefGoogle Scholar
  55. Middlemost EAK (1985) Magmas and magmatic rocks. Longman, LondonGoogle Scholar
  56. Miller RB, Paterson SR (2001) Construction of mid-crustal sheeted plutons: examples from the north Cascades, Washington. Geol Soc Am Bull 113:1423–1442. doi:10.1130/0016-7606(2001)113<1423:COMCSP>2.0.CO;2 CrossRefGoogle Scholar
  57. Miller JS, Matzel JEP, Miller CF, Burgess SD, Miller RB (2007) Zircon growth and recycling during the assembly of large, composite arc plutons. J Volcanol Geotherm Res 167:282–299. doi:10.1016/j.jvolgeores.2007.04.019 CrossRefGoogle Scholar
  58. Moore JG, Lockwood JP (1973) Origin of comb layering and orbicular structure, Sierra Nevada Batholith, California. Geol Soc Am Bull 84:1–20. doi:10.1130/0016-7606(1973)84<1:OOCLAO>2.0.CO;2 CrossRefGoogle Scholar
  59. Oliver HW (1977) Gravity and magnetic investigations of the Sierra Nevada batholith, California. Geol Soc Am Bull 88:445–461. doi:10.1130/0016-7606(1977)88<445:GAMIOT>2.0.CO;2 CrossRefGoogle Scholar
  60. Paterson SR, Farris DW (2008) Downward host rock transport and the formation of rim monoclines during the emplacement of Cordilleran batholiths. Trans R Soc Edinb Earth Sci 97:397–413Google Scholar
  61. Paterson SR, Miller RB (1998) Mid-crustal magmatic sheets in the Cascades Mountains, Washington: implications for magma ascent. J Struct Geol 20:1345–1363. doi:10.1016/S0191-8141(98)00072-8 CrossRefGoogle Scholar
  62. Paterson SR, Vernon RH (1995) Bursting the bubble of ballooning plutons: a return to nested diapirs emplaced by multiple processes. Geol Soc Am Bull 107:1356–1380. doi:10.1130/0016-7606(1995)107<1356:BTBOBP>2.3.CO;2 CrossRefGoogle Scholar
  63. Paterson SR, Vernon RH, Tobisch OT (1989) A review of criteria for identification of magmatic and tectonic foliations in granitoids. J Struct Geol 11:349–363. doi:10.1016/0191-8141(89)90074-6 CrossRefGoogle Scholar
  64. Paterson SR, Fowler TK, Miller RB (1996) Pluton emplacement in arcs: a crustal-scale exchange process. Trans R Soc Edinb Earth Sci 87:115–123Google Scholar
  65. Paterson SR, Fowler TK, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44:53–82. doi:10.1016/S0024-4937(98)00022-X CrossRefGoogle Scholar
  66. Paterson SR, Onezime J, Teruya L, Žák J (2003) Quadruple-pronged enclaves: their significance for the interpretation of multiple magmatic fabrics in plutons. J Virtual Explor 10:15–30Google Scholar
  67. Paterson S, Okaya D, Matzel J, Memeti V, Mundil R (2007) Size and longevity of magma chambers in the Tuolumne batholith: a comparison of thermal modeling and cooling thermochronology. Eos Trans AGU 88:V44C-02Google Scholar
  68. Paterson SR, Žák J, Janoušek V (2008) Growth of complex sheeted zones during recycling of older magmatic units into younger: Sawmill Canyon area, Tuolumne batholith, Sierra Nevada, California. J Volcanol Geotherm Res 177:457–484. doi:10.1016/j.jvolgeores.2008.06.024 CrossRefGoogle Scholar
  69. Pawley MJ, Collins WJ, Van Kranendonk MJ (2002) Origin of fine-scale sheeted granites by incremental injection of magma into active shear zones: examples from the Pilbara Craton, NW Australia. Lithos 61:127–139. doi:10.1016/S0024-4937(02)00076-2 CrossRefGoogle Scholar
  70. Petford N, Kerr RC, Lister JR (1993) Dike transport of granitoid magmas. Geology 21:845–848. doi:10.1130/0091-7613(1993)021<0845:DTOGM>2.3.CO;2 CrossRefGoogle Scholar
  71. Petford N, Lister JR, Kerr RC (1994) The ascent of felsic magmas in dykes. Lithos 32:161–168. doi:10.1016/0024-4937(94)90028-0 CrossRefGoogle Scholar
  72. Petford N, Cruden AR, McCaffrey KJW, Vigneresse JL (2000) Granite magma formation, transport and emplacement in the Earth’s crust. Nature 408:669–673. doi:10.1038/35047000 CrossRefGoogle Scholar
  73. Piccoli P, Candela P, Rivers M (2000) Interpreting magmatic processes from accessory phases: titanite—a small-scale recorder of large-scale processes. Trans R Soc Edinb Earth Sci 91:257–267Google Scholar
  74. Pons J, Barbey P, Nachit H, Burg JP (2006) Development of igneous layering during growth of pluton: the Tarcouate Laccolith (Morocco). Tectonophysics 413:271–286. doi:10.1016/j.tecto.2005.11.005 CrossRefGoogle Scholar
  75. Price NJ, Cosgrove JW (1990) Analysis of geological structures. Cambridge University Press, CambridgeGoogle Scholar
  76. Ramsay JG (1980) The crack-seal mechanism of rock deformation. Nature 284:135–139. doi:10.1038/284135a0 CrossRefGoogle Scholar
  77. Reid JB, Murray DP, Hermes OD, Steig EJ (1993) Fractional crystallization in granites of the Sierra Nevada: how important is it? Geology 21:587–590. doi:10.1130/0091-7613(1993)021<0587:FCIGOT>2.3.CO;2 CrossRefGoogle Scholar
  78. Sawka WN (1988) REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California. Trans R Soc Edinb Earth Sci 79:157–168Google Scholar
  79. Shannon JR, Walker BM, Carten RB, Geraghty RP (1982) Unidirectional solidification textures and their significance in determining relative ages of intrusions at Henderson Mine, Colorado. Geology 10:293–297. doi:10.1130/0091-7613(1982)10<293:USTATS>2.0.CO;2 CrossRefGoogle Scholar
  80. Sisson TW, Grove TL, Coleman DS (1996) Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib Mineral Petrol 126:81–108. doi:10.1007/s004100050237 CrossRefGoogle Scholar
  81. Solgadi F, Sawyer EW (2008) Formation of igneous layering in granodiorite by gravity flow: a field, microstructure and geochemical study of the Tuolumne Intrusive Suite at Sawmill Canyon, California. J Petrol 49:2009–2042. doi:10.1093/petrology/egn056 CrossRefGoogle Scholar
  82. Streckeisen A (1974) Classification and nomenclature of plutonic rocks. Geol Rundsch 63:773–786. doi:10.1007/BF01820841 CrossRefGoogle Scholar
  83. Tiepolo M, Oberti R, Vannucci R (2002) Trace element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119. doi:10.1016/S0009-2541(02)00151-1 CrossRefGoogle Scholar
  84. Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace element partitioning between amphibole and silicate melt. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles. Crystal chemistry, occurrence and health issues. Reviews in Mineralogy and Geochemistry 67. Mineralogical Society of America and Geochemical Society, Chantilly, pp 417–452Google Scholar
  85. Vernon RH (1985) Possible role of superheated magma in the formation of orbicular granitoids. Geology 13:843–845. doi:10.1130/0091-7613(1985)13<843:PROSMI>2.0.CO;2 CrossRefGoogle Scholar
  86. Vernon RH (2000) Review of microstructural evidence of magmatic and solid-state flow. Electron Geosci 5:1–23Google Scholar
  87. Vernon RH, Paterson SR (2008) How extensive are subsolidus grain-shape changes in cooling granites? Lithos 105:42–50. doi:10.1016/j.lithos.2008.02.004 CrossRefGoogle Scholar
  88. Vosteen HD, Schellschmidt R (2003) Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock. Phys Chem Earth 28:499–509Google Scholar
  89. Walker BA, Miller CF, Claiborne L, Wooden JL, Miller JS (2007) Geology and geochronology of the Spirit Mountain batholith, southern Nevada: implications for timescales and physical processes of batholith construction. J Volcanol Geotherm Res 167:239–262Google Scholar
  90. Webber CE, Candela PA, Piccoli PM, Simon AC (2001) Generation of granitic dikes: can texture, mineralogy, and geochemistry be used as guides to determine the mechanisms of diking? Geol Soc Am Abstracts with Programs, Paper no. 57-0Google Scholar
  91. Weinberg RF (1999) Mesoscale pervasive felsic magma migration: alternatives to dyking. Lithos 46:393–410. doi:10.1016/S0024-4937(98)00075-9 CrossRefGoogle Scholar
  92. Weinberg RF, Sial AN, Pessoa RR (2001) Magma flow within the Tavares pluton, northeastern Brazil: compositional and thermal convection. Geol Soc Am Bull 113:508–520. doi:10.1130/0016-7606(2001)113<0508:MFWTTP>2.0.CO;2 CrossRefGoogle Scholar
  93. Westraat JD, Kisters AFM, Poujol M, Stevens G (2005) Transcurrent shearing, granite sheeting and the incremental construction of the tabular 3.1 Ga Mpuluzi batholith, Barberton granite–greenstone terrane, South Africa. J Geol Soc London 162:373–388. doi:10.1144/0016-764904-026 CrossRefGoogle Scholar
  94. Wiebe RA (1993) The Pleasant Bay layered gabbro-diorite, Coastal Maine: ponding and crystallization of basaltic injections into a silicic magma chamber. J Petrol 34:461–489Google Scholar
  95. Wiebe RA (1996) Mafic-silicic layered intrusions: the role of basaltic injections on magmatic processes and the evolution of silicic magma chambers. Trans R Soc Edinb Earth Sci 87:233–242Google Scholar
  96. Wiebe RA, Collins WJ (1998) Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J Struct Geol 20:1273–1289. doi:10.1016/S0191-8141(98)00059-5 CrossRefGoogle Scholar
  97. Wiebe RA, Blair KD, Hawkins DP, Sabine CP (2002) Mafic injections, in situ hybridization, and crystal accumulation in the Pyramid Peak granite, California. Geol Soc Am Bull 114:909–920. doi:10.1130/0016-7606(2002)114<0909:MIISHA>2.0.CO;2 CrossRefGoogle Scholar
  98. Yoshinobu AS, Okaya DA, Paterson SR (1998) Modelling the thermal evolution of fault-controlled magma emplacement models: implications for the solidification of granitoid plutons. J Struct Geol 20:1205–1218. doi:10.1016/S0191-8141(98)00064-9 CrossRefGoogle Scholar
  99. Žák J, Paterson SR (2005) Characteristics of internal contacts in the Tuolumne Batholith, central Sierra Nevada, California (USA): implications for episodic emplacement and physical processes in a continental arc magma chamber. Geol Soc Am Bull 117:1242–1255. doi:10.1130/B25558.1 CrossRefGoogle Scholar
  100. Žák J, Paterson SR (2006) Roof and walls of the Red Mountain Creek pluton, eastern Sierra Nevada, California (USA): implications for process zones during pluton emplacement. J Struct Geol 28:575–587. doi:10.1016/j.jsg.2005.12.017 CrossRefGoogle Scholar
  101. Žák J, Vyhnálek B, Kabele P (2006) Is there a relationship between magmatic fabrics and brittle fractures in plutons? A view based on structural analysis, anisotropy of magnetic susceptibility and thermo-mechanical modelling of the Tanvald pluton (Bohemian Massif). Phys Earth Planet Inter 157:286–310. doi:10.1016/j.pepi.2006.05.001 CrossRefGoogle Scholar
  102. Žák J, Paterson SR, Memeti V (2007) Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust. Geol Soc Am Bull 119:184–201. doi:10.1130/B25773.1 CrossRefGoogle Scholar
  103. Zen E (1986) Aluminium enrichment in silicate melts by fractional crystallization: some mineralogic and petrographic constraints. J Petrol 27:1095–1117Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jiří Žák
    • 1
    • 2
  • Scott R. Paterson
    • 3
  • Vojtěch Janoušek
    • 2
    • 4
  • Petr Kabele
    • 5
  1. 1.Institute of Geology and Paleontology, Faculty of ScienceCharles UniversityPragueCzech Republic
  2. 2.Czech Geological SurveyPragueCzech Republic
  3. 3.Department of Earth SciencesUniversity of Southern CaliforniaLos AngelesUSA
  4. 4.Institute of Petrology and Structural Geology, Faculty of ScienceCharles UniversityPragueCzech Republic
  5. 5.Department of Mechanics, Faculty of Civil EngineeringCzech Technical University in PraguePragueCzech Republic

Personalised recommendations