Contributions to Mineralogy and Petrology

, Volume 158, Issue 2, pp 223–244

Magma chamber processes in central volcanic systems of Iceland: constraints from layered gabbro of the Austurhorn intrusive complex

Original Paper

Abstract

New field work and petrological investigations of the largest gabbro outcrop in Iceland, the Hvalnesfjall gabbro of the 6–7 Ma Austurhorn intrusive complex, have established a stratigraphic sequence exceeding 800 m composed of at least 8 macrorhythmic units. The bases of the macrorhythmic units are composed of 2–10 m thick melanocratic layers rich in clinopyroxene and sometimes olivine, relative to the thicker overlying leucocratic oxide gabbros. While the overall compositional variation is limited (Mg# clinopyroxene 72–84; An% plagioclase 56–85), the melanocratic bases display spikes in Mg# and Cr2O3 of clinopyroxene and magnetite indicative of magma replenishment. Some macrorhythmic units show mineral trends indicative of up-section fractional crystallisation over up to 100 m, whereas others show little variation. Two populations of plagioclase crystals (large, An-rich and small, less An-rich) indicate that the recharge magma carried plagioclase xenocrysts (high An-type). The lack of evolved gabbros suggests formation in a dynamic magma chamber with frequent recharge, tapping and fractionation. Modelling of these compositional trends shows that the parent magma was similar to known transitional olivine basalts from Iceland that had undergone about 20% crystallisation of olivine, plagioclase and clinopyroxene and that the macrorhythmic units formed from thin magma layers not exceeding 200–300 m. Such a “mushy” magma chamber is akin to volcanic plumbing systems in settings of high magma supply rate including the mid-ocean ridges and present-day magma chambers over the Iceland mantle plume. The Austurhorn central volcano likely formed in an off-rift flank zone proximal to the Iceland mantle plume during a major rift relocation.

Keywords

Iceland Austurhorn Layered gabbro Central volcano Magma chamber RTF processes 

Supplementary material

410_2009_379_MOESM1_ESM.xls (30 kb)
(XLS 29 kb)
410_2009_379_MOESM2_ESM.xls (104 kb)
(XLS 104 kb)
410_2009_379_MOESM3_ESM.xls (62 kb)
(XLS 62 kb)
410_2009_379_MOESM4_ESM.xls (108 kb)
(XLS 108 kb)

References

  1. Alfaro R, Brandsdottir B, Rowlands DP, White RS, Gudmundsson MT (2007) Structure of the Grímsvötn central volcano under the Vatnajökull icecap, Iceland. Geophys J Int 168:863–876. doi:10.1111/j.1365-246X.2006.03238.x CrossRefGoogle Scholar
  2. Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Miner 83:1127–1132Google Scholar
  3. Barnes SJ (1986) The effect of trapped liquid crystallization on cumulus mineral compositions. Contrib Miner Petrol 93:524–531. doi:10.1007/BF00371722 CrossRefGoogle Scholar
  4. Blake DH (1964) The volcanic geology of the Austurhorn area, south-eastern Iceland. PhD thesis, Imperial College, London University, 191 ppGoogle Scholar
  5. Blake DH (1966) The net-veined complex of the Austurhorn intrusion, southeastern Iceland. J Geol 74:891–907Google Scholar
  6. Blake S (1981) Volcanism and the dynamics of open magma chambers. Nature 289:783–785. doi:10.1038/289783a0 CrossRefGoogle Scholar
  7. Blake S, Rogers N (2005) Magma differentiation rates from (226Ra/230Th) and the size and power output of magma chambers. Earth Planet Sci Lett 236:654–669. doi:10.1016/j.epsl.2005.05.035 CrossRefGoogle Scholar
  8. Brandsdottir B, Menke W, Einarsson P, White RS, Staples RK (1997) Färoe-Iceland ridge experiment 2. Crustal structure of the Krafla central volcano. J Geophys Res 102(B4):7867–7886. doi:10.1029/96JB03799 CrossRefGoogle Scholar
  9. Campbell IH (1977) A study of macro-rhythmic layering and cumulate processes in the Jimberlana intrusion, western Australia. Part I: the upper layered series. J Petrol 18:83–215Google Scholar
  10. Campbell IH, Turner JS (1989) Fountains in magma chambers. J Petrol 30:885–923Google Scholar
  11. Carmichael ISE (1964) The petrology of Thingmuli, a Tertiary volcano in Eastern Iceland. J Petrol 5:435–460Google Scholar
  12. Cawthorn RG, McCarthy TS (1981) Bottom crystallization and diffusion control in layered complexes: evidence from Cr distribution in magnetite from the Bushveld Complex. Trans Geol Soc S Afr 84:41–50Google Scholar
  13. Cawthorn RG, Walraven FG (1998) Emplacement and crystallization time for the Bushveld Complex. J Petrol 39:1669–1687. doi:10.1093/petrology/39.9.1669 CrossRefGoogle Scholar
  14. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Miner Mag 51:431–435. doi:10.1180/minmag.1987.051.361.10 CrossRefGoogle Scholar
  15. Fridleifsson GO (1983) The geology and alteration history of the Geitafell central volcano, southeast Iceland. PhD thesis, University of Edinburgh, 371 ppGoogle Scholar
  16. Furman T, Frey FA, Meyer PS (1992a) Petrogenesis of evolved basalts and rhyolites at Austurhorn, Southeastern Iceland: the role of fractional crystallization. J Petrol 33:1405–1445Google Scholar
  17. Furman T, Meyer PS, Frey F (1992b) Evolution of Icelandic central volcanoes: evidence from the Austurhorn intrusion, southeastern Iceland. Bull Volcanol 55:45–62. doi:10.1007/BF00301119 CrossRefGoogle Scholar
  18. Gaetani GA, Watson EB (2000) Open system behaviour of olivine-hosted melt inclusions. Earth Planet Sci Lett 183:27–41. doi:10.1016/S0012-821X(00)00260-0 CrossRefGoogle Scholar
  19. Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Miner Petrol 119:197–212. doi:10.1007/BF00307281 CrossRefGoogle Scholar
  20. Grove TL, Bryan WB (1983) Fractionation of pyroxene-phyric MORB at low pressure: an experimental study. Contrib Miner Petrol 84:293–309. doi:10.1007/BF01160283 CrossRefGoogle Scholar
  21. Gudmundsson A (1995) Infrastructure and mechanics of volcanic systems in Iceland. J Volcanol Geotherm Res 64:1–22. doi:10.1016/0377-0273(95)92782-Q CrossRefGoogle Scholar
  22. Gudmundsson O (2003) The dense root of the Iceland crust. Earth Planet Sci Lett 206:427–440. doi:10.1016/S0012-821X(02)01110-X CrossRefGoogle Scholar
  23. Gudmundsson A, Andrew REB (2007) Mechanical interaction between active volcanoes in Iceland. Geophys Res Lett 34:L10310. doi:10.1029/2007GL029873 CrossRefGoogle Scholar
  24. Gudmundsson O, Brandsdottir B, Menke W, Sigvaldason GE (1994) The crustal magma chamber of the Katla volcano in south Iceland revealed by 2-D seismic undershooting. Geophys J Int 119:277–296. doi:10.1111/j.1365-246X.1994.tb00928.x CrossRefGoogle Scholar
  25. Gunnarsson B, Sigurdsson F (1982) Titanrikar steindir i gabbroi ur Hvalnesfjalli I Loni og Medalfelli I Nesjum. Orkustofnun report OS82094/VOD15. Reykjavik, 61 pp (In Icelandic with English summary)Google Scholar
  26. Halldorsson SA, Oskarsson N, Gronvold K, Sigurdsson G, Sverrisdottir G, Steinthorsson S (2008) Isotopic-heterogeneity of the Thorsa lava—implications for mantle sources and crustal processes within the Eastern Rift Zone, Iceland. Chem Geol 255:305–316. doi:10.1016/j.chemgeo.2008.06.050 CrossRefGoogle Scholar
  27. Hanan BB, Schilling JG (1997) The dynamic evolution of the Iceland mantle plume: the lead isotope perspective. Earth Planet Sci Lett 151:43–60. doi:10.1016/S0012-821X(97)00105-2 CrossRefGoogle Scholar
  28. Hansen H, Grönvold K (2000) Plagioclase ultraphyric basalts in Iceland: the mush of the rift. J Volcanol Geotherm Res 98:1–32. doi:10.1016/S0377-0273(99)00189-4 CrossRefGoogle Scholar
  29. Hardarson BS, Fitton JG, Ellam RM, Pringle MS (1997) Rift relocation—a geochemical and geochronological investigation of a palaeo-rift in northwest Iceland. Earth Planet Sci Lett 153:181–196. doi:10.1016/S0012-821X(97)00145-3 CrossRefGoogle Scholar
  30. Hards VL, Kempton PD, Thompson RN, Greenwood PB (2000) The magmatic evolution of the Snæfell volcanic centre; an example of volcanism during incipient rifting in Iceland. J Volcanol Geotherm Res 99:97–121. doi:10.1016/S0377-0273(00)00160-8 CrossRefGoogle Scholar
  31. Hellevang B, Pedersen RB (2008) Magma ascent and crustal accretion at ultraslow-spreading ridges: constraints from the plagioclase ultraphyric basalts from the arctic Mid-Ocean Ridge. J Petrol 49:267–294 CrossRefGoogle Scholar
  32. Huppert HE, Sparks RSJ (1980) The fluid dynamics of a basaltic magma chamber replenished by influx of hot, dense ultrabasic magma. Contrib Miner Petrol 75:279–289CrossRefGoogle Scholar
  33. Irvine TN (1982) Terminology for layered intrusions. J Petrol 23:127–162Google Scholar
  34. Irvine TN, Andersen JCØ, Brooks CK (1998) Included blocks (and blocks within blocks) in the Skaergaard intrusion: geological relations and the origins of rhytmic modally graded layers. Geol Soc Am Bull 110:1398–1447. doi:10.1130/0016-7606(1998)110<1398:IBABWB>2.3.CO;2 CrossRefGoogle Scholar
  35. Jakobsson SP (1979a) Outline of the petrology of Iceland. Jokull 29:57–73Google Scholar
  36. Jakobsson SP (1979b) Petrology of recent basalts of the Eastern Volcanic Zone, Iceland. Acta Nat Isl 26:1–103Google Scholar
  37. Jakobsson SP, Jonasson K, Sigurdsson IA (2008) The three igneous rock series of Iceland. Jokull 58:117–138Google Scholar
  38. Johanesson H, Saemundsson K (1998a) Geological map of Iceland, 1:500000. Bedrock geology, 2nd edn. Icelandic Museum of Natural History and Iceland Geodetic Survey, ReykjavikGoogle Scholar
  39. Johanesson H, Saemundsson K (1998b) Geological map of Iceland, 1:500000. Tectonics, 2nd edn. Icelandic Museum of Natural History and Iceland Geodetic Survey, Reykjavik Google Scholar
  40. Johannesson H, Saemundsson K (2003) Extinct central volcanoes of Iceland. Geological Map, Iceland Geosurvey, ReykjavikGoogle Scholar
  41. Klausen MB (2004) Geometry and mode of emplacement of the Thverartindur cone sheet swarm, SE Iceland. J Volcanol Geotherm Res 138:185–204. doi:10.1016/j.jvolgeores.2004.05.022 CrossRefGoogle Scholar
  42. Klausen MB (2006) Geometry and mode of emplacement of dike swarms around the Birnudalstindur igneous centre, SE Iceland. J Volcanol Geotherm Res 151:340–356. doi:10.1016/j.jvolgeores.2005.09.006 CrossRefGoogle Scholar
  43. Larsen G, Gudmundsson MT, Björnsson H (1998) Eight centuries of periodic volcanism at the center of the Iceland hotspot revealed by glacier tephrostratigraphy. Geology 26:943–946. doi:10.1130/0091-7613(1998)026<0943:ECOPVA>2.3.CO;2 CrossRefGoogle Scholar
  44. Mattson SR, Vogel TA, Wilband JT (1986) Petrochemistry of the silicic-mafic complexes at Vesturhorn and Austurhorn, Iceland: evidence for zoned/stratified magma. J Volcanol Geotherm Res 28:197–223. doi:10.1016/0377-0273(86)90023-5 CrossRefGoogle Scholar
  45. McBirney AR (1989) The Skaergaard layered series. Part I. Structure and average compositions. J Petrol 39:255–276. doi:10.1093/petrology/39.2.255 CrossRefGoogle Scholar
  46. McBirney AR, Hunter RH (1995) The cumulate paradigm reconsidered. J Geol 103:114–122Google Scholar
  47. McBirney AR, Noyes RM (1979) Crystallization and layering of the Skaergaard intrusion. J Petrol 20:487–554Google Scholar
  48. Meyer PS, Sigurdsson H, Schilling JG (1985) Petrological and geochemical variations along Iceland’s neovolcanic zones. J Geophys Res 90:10043–10072. doi:10.1029/JB090iB12p10043 CrossRefGoogle Scholar
  49. Moorbath S, Sigurdsson H, Goodwin R (1968) K-Ar ages of the oldest exposed rocks in Iceland. Earth Planet Sci Lett 4:197–205. doi:10.1016/0012-821X(68)90035-6 CrossRefGoogle Scholar
  50. Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Miner 73:1123–1133Google Scholar
  51. Musset AE, Ross JG, Gibson IL (1980) 40Ar/39Ar dates of eastern Iceland lavas. Geophys J Roy Astron Soc 60:37–52Google Scholar
  52. O’Hara MJ (1977) Geochemical evolution during fractional crystallisation of a periodically refilled magma chamber. Nature 266:503–507. doi:10.1038/266503a0 CrossRefGoogle Scholar
  53. O’Hara MJ, Mathews RW (1981) Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. J Geol Soc Lond 138:237–277. doi:10.1144/gsjgs.138.3.0237 CrossRefGoogle Scholar
  54. Pallister JS, Hopson CA (1981) Samial ophiolite suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. J Geophys Res 86(B4):2593–2644. doi:10.1029/JB086iB04p02593 CrossRefGoogle Scholar
  55. Presnall DC (1966) The join forsterite-diopside-iron oxide and its bearing on the crystallization of basaltic and ultramafic magmas. Am J Sci 264:753–809Google Scholar
  56. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289. doi:10.1007/BF00371276 CrossRefGoogle Scholar
  57. Roobol MJ (1974) The geology of the Vesturhorn intrusion, SE Iceland. Geol Mag 111:273–368CrossRefGoogle Scholar
  58. Ross JG, Musset AE (1976) 40Ar/39Ar dates for spreading rates in eastern Iceland. Nature 256:36–38. doi:10.1038/259036a0 CrossRefGoogle Scholar
  59. Saemundsson K (1979) Outline of the geology of Iceland. Jokull 29:7–29Google Scholar
  60. Sigurdsson H, Sparks RSJ (1981) Petrology of rhyolitic and mixed magma ejecta from the 1875 eruption of Askja, Iceland. J Petrol 22:41–84Google Scholar
  61. Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res 97(B1):197–216. doi:10.1029/91JB02508 CrossRefGoogle Scholar
  62. Smith PM, Asimow PD (2005) Adiabat_1ph: A new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosyst 6:Q02004. doi:10.1029/2004GC000816 CrossRefGoogle Scholar
  63. Snyder D, Carmichael ISE, Wiebe RA (1993) Experimental study of liquid evolution in an Fe-rich layered mafic intrusion: constraints of Fe–Ti oxide precipitation on the T-fO2 and T-ρ paths of tholeiitic magmas. Contrib Miner Petrol 122:230–240. doi:10.1007/s004100050123 CrossRefGoogle Scholar
  64. Soesoo A (1998) Episodic magmatism and diverse plutonic products within the Thverartindur central volcanic complex at the former Icelandic plate margin. J Geol Soc Lond 155:801–812. doi:10.1144/gsjgs.155.5.0801 CrossRefGoogle Scholar
  65. Sparks RSJ, Huppert HE (1984) Density changes during fractional crystallization of basaltic magmas: fluid dynamic implications. Contrib Miner Petrol 85:300–309. doi:10.1007/BF00378108 CrossRefGoogle Scholar
  66. Sparks RSJ, Sigurdsson H, Wilson L (1977) Magma mixing: a mechanism for triggering acid explosive eruptions. Nature 267:315–318. doi:10.1038/267315a0 CrossRefGoogle Scholar
  67. Stormer JC Jr (1983) The effects of recalculation on estimates of temperature and oxygen fugacity from analyses of multicomponent iron–titanium oxides. Am Miner 68:586–594Google Scholar
  68. Sturkell E, Einarsson P, Sigmundsson F, Hreinsdottir S, Geirsson H (2003) Deformation of Grímsvötn volcano, Iceland: 1998 eruption and subsequent inflation. Geophys Res Lett 30:1182. doi:10.1029/2002GL016460 CrossRefGoogle Scholar
  69. Sturkell E, Einarsson P, Sigmundsson F, Geirsson H, Olafsson H, Pedersen R, de Zeeuw-van Dalfsen E, Linde AT, Sacks SI, Stefansson R (2006) Volcano geodesy and magma dynamics in IcelandGoogle Scholar
  70. Tegner C, Wilson JR (1995) Textures in a poikilitic olivine gabbro cumulate: evidence for supercooling. Miner Petrol 54:161–173. doi:10.1007/BF01162859 CrossRefGoogle Scholar
  71. Tegner C, Wilson JR, Brooks CK (1993) Intraplutonic quench zones in the Kap Edward Holm layered gabbro complex. J Petrol 34:681–710Google Scholar
  72. Tegner C, Cawthorn RG, Kruger J (2006) Cyclicity in the Main and Upper Zones of the Bushveld Complex, South Africa: crystallization from a zoned magma sheet. J Petrol 47:2257–2279. doi:10.1093/petrology/egl043 CrossRefGoogle Scholar
  73. Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruption history. J Geodyn 43:118–152. doi:10.1016/j.jog.2006.09.005 CrossRefGoogle Scholar
  74. Thy P, Lofgren GE (1994) Experimental constraints on the low-pressure evolution of transitional and mildly alkalic basalts: the effect of Fe–Ti oxide minerals and the origin of basaltic andesites. Contrib Miner Petrol 116:340–351. doi:10.1007/BF00306502 CrossRefGoogle Scholar
  75. Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral-melt equilibria in ferro-basaltic systems. J Petrol 36:837–858Google Scholar
  76. Toplis MJ, Libourel G, Carroll MR (1994) The role of phosphorous in crystallisation processes of basalt: an experimental study. Geochim Cosmochim Acta 58:797–810. doi:10.1016/0016-7037(94)90506-1 CrossRefGoogle Scholar
  77. Torfason H (1979) Investigations into the structure of South-Eastern Iceland. PhD thesis, University of Liverpool, 568 ppGoogle Scholar
  78. Tryggvason E (1994) Surface deformation at the Krafla volcano, North Iceland. Bull Volcanol 56:98–107Google Scholar
  79. Wager LR, Brown BM (1968) Layered igneous rocks. Oliver and Boyd Ltd, Edinburgh, p 588Google Scholar
  80. Walker GPL (1963) The Breiddalur central volcano, eastern Iceland. Q J Geol Soc Lond 119:29–63CrossRefGoogle Scholar
  81. Walker GPL (1974) The structure of eastern Iceland. In: Kristjansson L (ed) Geodynamics of Iceland and the North Atlantic area. D Reidel Publishin Company, Dordrecht-Holland, pp 177–188Google Scholar
  82. Walker GPL (1975) Intrusive sheet swarms and the identity of Crustal Layer 3 in Iceland. J Geol Soc London 131:143–161. doi:10.1144/gsjgs.131.2.0143 CrossRefGoogle Scholar
  83. Watkins ND, Walker GPL (1977) Magnetostratigraphy of eastern Iceland. Am J Sci 277:513–584Google Scholar
  84. Wiebe RA, Snyder D (1993) Slow, dense replenishments of a basic magma chamber: the layered series of the Newark Island layered intrusion, Nain, Labrador. Contrib Miner Petrol 113:59–72. doi:10.1007/BF00320831 CrossRefGoogle Scholar
  85. Wilson JR, Sørensen HS (1996) The Fongen-Hyllingen layered intrusive complex, Norway. In: Cawthorn RG (ed) Layered Intrusions, vol 15. Developments in petrology. Elsevier Science, pp 303–330Google Scholar
  86. Wolfe CT, Bjarnason IT, VanDecar SC, Solomon SC (1997) Seismic structure of the Iceland mantle plume. Nature 385:245–247. doi:10.1038/385245a0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Earth SciencesUniversity of AarhusÅrhus CDenmark
  2. 2.Nordic Volcanological CenterUniversity of IcelandReykjavikIceland
  3. 3.Department of Geography and GeologyUniversity of CopenhagenKøbenhavn KDenmark

Personalised recommendations