Contributions to Mineralogy and Petrology

, Volume 158, Issue 1, pp 113–130 | Cite as

Origin of a Mesozoic granite with A-type characteristics from the North China craton: highly fractionated from I-type magmas?

  • Neng Jiang
  • Shuangquan Zhang
  • Wenge Zhou
  • Yongsheng Liu
Original Paper


We report geochronological, geochemical and isotopic data for the Mesozoic Shangshuiquan granite from the northern margin of the North China craton. The granite is highly fractionated, with SiO2 > 74%. Occurrence of annitic biotite, high contents of alkalis (K2O + Na2O), Rb, Y, Nb and heavy rare earth elements, high FeOt/MgO, low contents of CaO, Al2O3, Ba, and Sr, and large negative Eu anomalies, makes it indistinguishable from typical A-type granites. A mantle-derived origin for the rocks of the granite is not favored because their high initial 87Sr/86Sr (≥0.706) and low εNd (t) (<−15) are completely different from either those of the lithospheric or asthenospheric mantle. In fact, their Sr–Nd isotopes fall within the range of Sr–Nd isotopic compositions of the Archean granulite terrains and are comparable to those of Mesozoic crustal-derived I-type granitoids in the region. Therefore, the Shangshuiquan granite is considered to be dominantly derived from partial melting of the ancient lower crust. Its parental magmas prove to be similar to I-type magmas and to have undergone extensive fractionation during its ascent. This is supported by the fact that some of the nearby Hannuoba feldspar-rich granulite xenoliths can be indeed regarded as the early cumulates in terms of their mineralogy, chemistry, Sr–Nd isotopes and zircon U–Pb ages and Hf isotopes. It is furthermore argued that some of highly fractionated granites worldwide, especially those with A-type characteristics and lacking close relationship with unfractionated rocks, may in fact be fractionated I-type granites. This suggestion can explain their close temporal and spatial associations as well as similar Sr–Nd isotopes with I-type granites. Our study also sheds new light on the petrogenesis of deep crustal xenoliths.


Fractionation I-type granite A-type granite North China craton Lower crustal xenoliths 



Qian Mao and Yuguang Ma are thanked for help in cathodoluminescence imaging and Zhuyin Chu, Chaofeng Li, Haihong, Chen, Zhaochu Hu, Xindi Jin, Liewen Xie and Yueheng Yang are thanked for helps during Sr and Nd isotope, zircon LA-ICP-MS age, ICP-MS, XRF and zircon Hf isotope analyses. This research was supported by the Ministry of Science and Technology, China (grant 2006CB403504) and the National Natural Science Foundation of China (No. 40773024).


  1. Arth JG (1976) Behavior of trace elements during magmatic processes—a summary of theoretical models and their applications. J Res US Geol Surv 4:41–47Google Scholar
  2. Barbarin B (1999) A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46:605–626. doi: 10.1016/S0024-4937(98)00085-1 CrossRefGoogle Scholar
  3. Blichert-Toft J, Albarede F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258. doi: 10.1016/S0012-821X(97)00040-X CrossRefGoogle Scholar
  4. Brooks CK, Henderson P, Ronsbo JG (1981) Rare earth element partitioning between allanite and glass in the obsidian of Sandy Bracs, Northern Ireland. Mineral Mag 44:157–160. doi: 10.1180/minmag.1981.044.334.07 CrossRefGoogle Scholar
  5. Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174Google Scholar
  6. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26Google Scholar
  7. Chen SH, Zhang GH, Zhou XH, Sun M, Feng JL, Xie MZ (1998) Petrological investigation on the granulite xenoliths from Hannuoba basalts, northern Sino-Korean craton. Acta Petrol Sin 14:366–380 (in Chinese)Google Scholar
  8. Chen SH, O’Reilly SY, Zhou XH, Griffin WL, Zhang GH, Sun M, Feng JL, Zhang M (2001) Thermal and petrological structure of the lithosphere beneath Hannuoba, Sino-Korean craton, China: evidence from xenoliths. Lithos 56:267–301. doi: 10.1016/S0024-4937(00)00065-7 CrossRefGoogle Scholar
  9. Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80:189–200. doi: 10.1007/BF00374895 CrossRefGoogle Scholar
  10. Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual-source model. Geology 19:163–166. doi:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2CrossRefGoogle Scholar
  11. Eby GN (1990) A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26:115–134. doi: 10.1016/0024-4937(90)90043-Z CrossRefGoogle Scholar
  12. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048. doi: 10.1093/petrology/42.11.2033 CrossRefGoogle Scholar
  13. Goldstein SL, O’Nions RK, Hamilton PJ (1984) A Sm–Nd isotopic study of atmospheric dusts and particulates from major river system. Earth Planet Sci Lett 70:221–236. doi: 10.1016/0012-821X(84)90007-4 CrossRefGoogle Scholar
  14. Green TH, Pearson NJ (1985) Rare earth element partitioning between clinopyroxene and silicate liquid at moderate to high pressure. Contrib Mineral Petrol 91:24–26. doi: 10.1007/BF00429424 CrossRefGoogle Scholar
  15. Griffin WL, Zhang AD, O’Reilly SY, Ryan CG (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean craton. In: Flower M, Chung SL, Lo CH, Lee TY (eds) Mantle Dynamics and Plate Interactions in East Asia. American Geophysical Union, Geodynamic Series 27, pp 107–126Google Scholar
  16. Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY (2002) Zircon geochemistry and magma mixing, SE China: in situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61:237–269. doi: 10.1016/S0024-4937(02)00082-8 CrossRefGoogle Scholar
  17. Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477. doi: 10.1016/0016-7037(84)90403-4 CrossRefGoogle Scholar
  18. Huang XL, Xu YG, Liu DY (2004) Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China: Implication for a heterogeneous lower crust beneath the Sino-Korean Craton. Geochim Cosmochim Acta 68:127–149. doi: 10.1016/S0016-7037(03)00416-2 CrossRefGoogle Scholar
  19. Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155. doi: 10.1016/0012-821X(80)90125-9 CrossRefGoogle Scholar
  20. Jiang N (2005) Petrology and geochemistry of the Shuiquangou syenitic complex, northern margin of the North China craton. J Geo Soc Lond 162:203–215. doi: 10.1144/0016-764903-144 CrossRefGoogle Scholar
  21. Jiang N, Liu YS, Zhou WG, Yang JH, Zhang SQ (2007) Derivation of Mesozoic adakitic magmas from ancient lower crust in the North China craton. Geochim Cosmochim Acta 71:2591–2608. doi: 10.1016/j.gca.2007.02.018 CrossRefGoogle Scholar
  22. King PL, White AJR, Chappell BW, Allen CM (1997) Characterization and origin of aluminous A-type granites from the Lachlan Fold Belt, southeastern Australia. J Petrol 38:371–391. doi: 10.1093/petrology/38.3.371 CrossRefGoogle Scholar
  23. Landenberger B, Collins WJ (1996) Derivation of A-type granites from a dehydration charnockitic lower crust: evidence from the Chaelundi complex, eastern Australia. J Petrol 37:145–170. doi: 10.1093/petrology/37.1.145 CrossRefGoogle Scholar
  24. Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remnants of ≥3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20:339–342. doi:10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2CrossRefGoogle Scholar
  25. Liu YS, Gao S, Jin SY, Hu SY, Sun M, Zhao ZB, Feng JL (2001) Geochemistry of lower crustal xenoliths from Neocene Hannuoba basalt, North China craton: implications for petrogenesis and lower crustal composition. Geochim Cosmochim Acta 65:2589–2604. doi: 10.1016/S0016-7037(01)00609-3 CrossRefGoogle Scholar
  26. Liu YS, Gao S, Yuan HL, Zhou L, Liu XM, Wang XC, Hua ZC, Wang LS (2004) U–Pb zircon ages and Nd, Sr, and Pb isotopes of lower crustal xenoliths from North China Craton: insights on evolution of lower continental crust. Chem Geol 211:87–109. doi: 10.1016/j.chemgeo.2004.06.023 CrossRefGoogle Scholar
  27. Liu YS, Gao S, Lee C-TA, Hu SY, Liu XM, Yuan HL (2005) Melt-peridotite interactions: links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett 234:39–57. doi: 10.1016/j.epsl.2005.02.034 CrossRefGoogle Scholar
  28. Loiselle MC, Wones DR (1979) Characterization and origin of anorogenic granites. Geol Soc Am Abstr 11:468Google Scholar
  29. Ludwig KR (2003) User’s manual for ISOPLOT 3.00: a geochronological toolkit for Microsoft Excel, Special Publication No. 4. Berkeley Geochronology Center, p 71Google Scholar
  30. Lugmair GW, Marti K (1978) Lunar initial 143Nd/144Nd: differential evolution of the lunar crust and mantle. Earth Planet Sci Lett 39:349–357. doi: 10.1016/0012-821X(78)90021-3 CrossRefGoogle Scholar
  31. Menzies A, Fan WM, Zhang M (1993) Paleozoic and Cenozoic lithoprobes and the loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard HM, Alabaster T, Harris, NBW, Neary CR (eds) Magmatic processes and plate tectonic. Geological Society, London, pp 71–81Google Scholar
  32. Miao LC, Qiu YM, McNaughton NJ, Luo ZK, Groves DI, Zhai YS, Fan WM, Zhai MG, Guan K (2002) SHRIMP U–Pb zircon geochronology of granitoids from Dongping area, Hebei Province, China: constraints on tectonic evolution and geodynamic setting for gold metallogeny. Ore Geol Rev 19:187–204. doi: 10.1016/S0169-1368(01)00041-5 CrossRefGoogle Scholar
  33. Mushkin A, Navon O, Halicz L, Hartmann G, Stein M (2003) The petrogenesis of A-type magmas from the Amram Massif, southern Israel. J Petrol 44:815–832. doi: 10.1093/petrology/44.5.815 CrossRefGoogle Scholar
  34. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust, treatise in geochemistry, vol 3, pp 1–64Google Scholar
  35. Rudnick RL, Taylor SR (1987) The composition and petrogenesis of the lower crust: a xenolith study. J Geophys Res 92(B13):13981–14005. doi: 10.1029/JB092iB13p13981 CrossRefGoogle Scholar
  36. Rudnick RL, Gao S, Ling WL, Liu YS, McDonough WF (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 77:609–637. doi: 10.1016/j.lithos.2004.03.033 CrossRefGoogle Scholar
  37. Soderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324. doi: 10.1016/S0012-821X(04)00012-3 CrossRefGoogle Scholar
  38. Song Y, Frey FA, Zhi XC (1990) Isotopic characteristics of Hannuoba basalts, Eastern China—implications for their petrogenesis and the composition of subcontinental mantle. Chem Geol 88:35–52. doi: 10.1016/0009-2541(90)90102-D CrossRefGoogle Scholar
  39. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins, vol 42. Geological Society of London, Special Publications, pp 313–345Google Scholar
  40. Turner SP, Foden JD, Morrison RS (1992) Derivation of some A-type magmas by fractionation of basaltic magma; an example from the Padthaway Ridge, South Australia. Lithos 28:151–179. doi: 10.1016/0024-4937(92)90029-X CrossRefGoogle Scholar
  41. Volkert RA, Feigenson MD, Patino LC, Delaney JS, Drake AA Jr (2000) Sr and Nd isotopic compositions, age and petrogenesis of A-type granitoids of the Vernon Supersuite, New Jersey Highlands, USA. Lithos 50:325–347. doi: 10.1016/S0024-4937(99)00065-1 CrossRefGoogle Scholar
  42. Watson EB (1979) Zircon saturation in felsic liquids: experimental data and applications to trace element geochemistry. Contrib Mineral Petrol 70:407–419. doi: 10.1007/BF00371047 CrossRefGoogle Scholar
  43. Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304. doi: 10.1016/0012-821X(83)90211-X CrossRefGoogle Scholar
  44. Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419. doi: 10.1007/BF00402202 CrossRefGoogle Scholar
  45. Wilde SA, Zhou XH, Nemchin AA, Sun M (2003) Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology 31:817–820. doi: 10.1130/G19489.1 CrossRefGoogle Scholar
  46. Wood BJ, Banno S (1973) Garnet-orthopyroxene and orthopyroxene–clinopyroxene relationships in simple and complex systems. Contrib Mineral Petrol 42:109–124. doi: 10.1007/BF00371501 CrossRefGoogle Scholar
  47. Woodhead J, Hergt J, Shelley M, Eggins S, Kemp R (2004) Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation. Chem Geol 209:121–135. doi: 10.1016/j.chemgeo.2004.04.026 CrossRefGoogle Scholar
  48. Wu FY, Sun DY, Li HM, Jahn BM, Wilde SA (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187:143–173. doi: 10.1016/S0009-2541(02)00018-9 CrossRefGoogle Scholar
  49. Wu FY, Yang YH, Xie LW, Yang JH, Xu P (2006) Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chem Geol 234:105–126. doi: 10.1016/j.chemgeo.2006.05.003 CrossRefGoogle Scholar
  50. Yuan HL, Gao S, Liu XM, Li HM, Günther D, Wu FY (2004) Accurate U–Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostand Newsl 28:353–370. doi: 10.1111/j.1751-908X.2004.tb00755.x CrossRefGoogle Scholar
  51. Zhai MG (1996) Granulites and lower continental crust in North China Archean Craton. Seismological Press, BeijingGoogle Scholar
  52. Zhang GH (1997) Geochemistry of granulite and pyroxenite xenoliths in Hannuoba basalts, North China, and its implications to crust–mantle interaction. PhD dissertation (Institute of Geology and Geophysics, Chinese Academy of Sciences), p 73 (in Chinese)Google Scholar
  53. Zhang XH, Mao Q, Zhang HF, Wilde SA (2008) A Jurassic peraluminous leucogranite from Yiwulüshan, western Liaoning, North China craton: age, origin and tectonic significance. Geol Mag 145:305–320. doi: 10.1017/S0016756807004311 CrossRefGoogle Scholar
  54. Zhao GC, Wilde SA, Cawood PA, Sun M (2001) Archean blocks and their boundaries in the North China craton: lithological, geochemical, structural and P–T constraints and tectonic evolution. Precambrian Res 107:45–73. doi: 10.1016/S0301-9268(00)00154-6 CrossRefGoogle Scholar
  55. Zheng JP, Lu FX, Yu CM, Tang HY (2004) An in situ zircon Hf isotopic, U–Pb age and trace element study of banded granulite xenolith from Hannuoba basalt: Tracking the early evolution of the lower crust in the North China craton. Chin Sci Bull 49:277–285. doi: 10.1360/03wd0385 CrossRefGoogle Scholar
  56. Zhou XH, Sun M, Zhang GH, Chen SH (2002) Comtinental crust and lithospheric mantle interaction beneath North China: isotopic evidence from granulite xenoliths in Hannuoba, Sino-Korean craton. Lithos 62:111–124. doi: 10.1016/S0024-4937(02)00110-X CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Neng Jiang
    • 1
  • Shuangquan Zhang
    • 2
  • Wenge Zhou
    • 3
  • Yongsheng Liu
    • 4
  1. 1.Key Laboratory of Mineral Resources, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Chemistry and BiochemistryUniversity of WindsorWindsorCanada
  3. 3.Institute of GeochemistryChinese Academy of SciencesGuiyangChina
  4. 4.State Key Laboratory of Geological Processes and Mineral ResourcesChina University of GeosciencesWuhanChina

Personalised recommendations