Contributions to Mineralogy and Petrology

, Volume 158, Issue 1, pp 69–98 | Cite as

High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia

  • José F. Molina
  • Jane H. Scarrow
  • Pilar G. Montero
  • Fernando Bea
Original Paper


Central Iberian Variscan granite batholiths and anatectic complexes are punctuated by coeval stocks of hydrous, high-K calc-alkaline, ultrabasic to intermediate rock series. Despite their overall calc-alkaline affinity, the mafic–ultramafic members contain high-Ti amphibole oikocrysts rimmed by lower-Ti amphibole ± cummingtonite and high-Ti amphibole replacing early phlogopite. To understand the factors controlling the saturation of high-Ti amphibole in the parental magmas, clinopyroxene-melt, phlogopite-melt and amphibole-melt relationships are reviewed. This analysis reveals that for melts with intermediate compositions, the affinity of TiO2 for amphibole rises in alkalic magmas. Accordingly, mildly alkalic trachytoid to subalkaline medium- to high-K andesite and dacite compositions are estimated for interstitial high-Ti amphibole-saturated melts. Amphibole Ce/Pb ratios reveal a mantle–crust hybrid nature for interstitial melts with subalkaline trachytoid compositions. The hydrous character of the Variscan basic magmas favoured an overall magmatic evolutionary trend with a low rate of variation of Na2O with respect to silica during amphibole crystallization.


TiO2 Olivine TiO2 Content Alkali Content Magma Alkalinity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Peter Ulmer and an anonymous referee for careful and thoughtful reviews, and Max W. Schmidt for editorial handling and comments. This work was financially supported by the Spanish CICYT project CLG2005-05863/BTE and the Andalusian project RNM1595492.

Supplementary material

410_2008_371_MOESM1_ESM.doc (109 kb)
Supplementary Table S1 (DOC 109 kb)
410_2008_371_MOESM2_ESM.doc (130 kb)
Supplementary Table S2 (DOC 130 kb)


  1. Adam J, Green TH (1994) The effects of pressure and temperature on the partitioning of Ti, Sr and REE between amphibole, clinopyroxene and basanitic melts. Chem Geol 117:219–233. doi: 10.1016/0009-2541(94)90129-5 CrossRefGoogle Scholar
  2. Adam J, Green TH, Sie SH (1993) Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and silicate melts with variable F content. Chem Geol 109:29–49. doi: 10.1016/0009-2541(93)90060-V CrossRefGoogle Scholar
  3. Andersen DJ, Lindsley DH, Davidson PM (1993) QUILF-a Pascal program to assess equilibria among Fe–Mg–Ti oxides, pyroxenes, olivine and quartz. Comput Geosci 19:1333–1350. doi: 10.1016/0098-3004(93)90033-2 CrossRefGoogle Scholar
  4. Arai S (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineral Mag (Lond) 56:173–184. doi: 10.1180/minmag.1992.056.383.04 CrossRefGoogle Scholar
  5. Azor A, González-Lodeiro F, Simancas F (1994) Tectonic evolution of the boundary between the Central Iberian and Ossa-Morena zones (Variscan belt, southwest Spain). Tectonics 13:45–61. doi: 10.1029/93TC02724 CrossRefGoogle Scholar
  6. Barbero L (1995) Granulite-facies metamorphism in the Anatectic Complex of Toledo, Spain: late Hercynian evolution by crustal extension. J Geol Soc London 152:365–383. doi: 10.1144/gsjgs.152.2.0365 CrossRefGoogle Scholar
  7. Barbero L, Villaseca C (1989) Caracterización geoquímica de las rocas gabroideas de Toledo (región central del hercínico Ibérico). III Congr. Geoquímica de España, Soria, pp 97–107Google Scholar
  8. Barbero L, Villaseca C (2004) El macizo de Toledo. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 110–115Google Scholar
  9. Barclay J, Carmichael ISE (2004) A hornblende basalt from Western Mexico: water-satuarted phase relations constrain a pressure–temperature window for eruptibility. J Petrol 45:485–506. doi: 10.1093/petrology/egg091 CrossRefGoogle Scholar
  10. Bartels KS, Kinzler RJ, Grove TL (1991) High-pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib Mineral Petrol 108:253–270. doi: 10.1007/BF00285935 CrossRefGoogle Scholar
  11. Bea F (1996) Residence of REE, Y, Th and U in granites and crustal protoliths: implications for the chemistry of crustal melts. J Petrol 37:521–552. doi: 10.1093/petrology/37.3.521 CrossRefGoogle Scholar
  12. Bea F (2004) La naturaleza del magmatismo de la Zona Centro Ibérica: consideraciones generales y ensayo de correlación. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 128–133Google Scholar
  13. Bea F, Corretgé LG (1986) Petrography, geochemistry, and differentiation models of lamprophyres from Sierra de Gredos, central Spain. Hercynica II:1–15Google Scholar
  14. Bea F, Montero P, Stroh A, Bassner J (1996) Microanalysis of minerals by an excimer UV-LA-ICP-MS system. Chem Geol 133:145–156. doi: 10.1016/S0009-2541(96)00073-3 CrossRefGoogle Scholar
  15. Bea F, Montero P, Molina JF (1999) Mafic precursors, peraluminous granitoids, and late lamprophyres in the Avila batholith: a model for the generation of Variscan batholiths in Iberia. J Geol 107:399–419. doi: 10.1086/314356 CrossRefGoogle Scholar
  16. Bea F, Montero P, Scarrow JH, Molina JF (2002) The Gredos sector of the Avila Batholith, Central Iberia: an introduction. Gredos seminar on crustal granites Navarredonda de Gredos, 7–12 September 2002Google Scholar
  17. Bea F, Montero P, Zinger T (2003) The nature and origin of the granite source layer of Central Iberia: evidence from trace element, Sr and Nd isotopes, and zircon age patterns. J Geol 111:579–595. doi: 10.1086/376767 CrossRefGoogle Scholar
  18. Bea F, Villaseca C, Bellido F (2004) El Batolito de Avila (Sistema Central Español). In: Vera JA (ed) Geología de España. SGE-ITGE, Madrid, pp 101–110Google Scholar
  19. Bea F, Fershtater GB, Montero P, Smirnov VN, Molina JF (2005) Deformation-driven differentiation of granitic magma: the Stepninsk pluton of the Uralides, Russia. Lithos 81:209–233. doi: 10.1016/j.lithos.2004.10.004 CrossRefGoogle Scholar
  20. Bea F, Montero PG, González-Lodeiro F, Talavera C, Molina JF, Scarrow JH, Whitehouse MJ, Zinger T (2006) Zircon thermometry and U–Pb ion-microprobe dating of the gabbros and associated migmatites of the Variscan Toledo Anatectic Complex, Central Iberia. J Geol Soc London 163:847–855. doi: 10.1144/0016-76492005-143 CrossRefGoogle Scholar
  21. Beard JS, Ragland PC, Crawford ML (2005) Using incongruent equilibrium hydratation reactions to model latter-stage crystallization in plutons: examples from the Bell Island Tonalite, Alaska. J Geol 113:589–599. doi: 10.1086/431911 CrossRefGoogle Scholar
  22. Best MG (1970) Kaersutite-peridotite inclusions and kindred megacrysts in basanite lavas, Grand Canyon, Arizona. Contrib Mineral Petrol 27:25–44. doi: 10.1007/BF00539539 CrossRefGoogle Scholar
  23. Best MG (2006) Igneous and metamorphic petrology. Blackwell, OxfordGoogle Scholar
  24. Blatter DL, Carmichael ISE (2001) Hydrous phase equilibria of a Mexican high-silica andesite: a candidate for a mantle origin? Geochim Cosmochim Acta 65:4043–4065. doi: 10.1016/S0016-7037(01)00708-6 CrossRefGoogle Scholar
  25. Boettcher AL, O’Neil JR (1980) Stable isotope, chemical, and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. Am J Sci 280-A:549–621Google Scholar
  26. Bowen NL (1928) The evolution of the igneous rocks. Princeton University Press, PrincetonGoogle Scholar
  27. Castro A, Corretge LG, De La Rosa JD, Fernandez C, Lopez S, Garcia-Moreno O, Chacon H (2003) The appinite–migmatite complex of Sanabria, NW Iberian massif, Spain. J Petrol 44:1309–1344. doi: 10.1093/petrology/44.7.1309 CrossRefGoogle Scholar
  28. Cawthorn RG (1976a) Melting relations in part of the system CaO–MgO–Al2O3–SiO2–Na2O–H2O under 5 kbar pressure. J Petrol 17:44–72Google Scholar
  29. Cawthorn RG (1976b) Some chemical controls on igneous amphibole. Geochim Cosmochim Acta 40:1319–1328. doi: 10.1016/0016-7037(76)90121-6 CrossRefGoogle Scholar
  30. Comin-Chiaramonti P, Cundari A, Gomes CB, Piccirillo EM, Censi P, DeMin A, Bellieni G, Velazquez VF, Orué D (1992) Potassic dyke swarm in the Sapucai Graben, eastern Paraguay: petrographical, mineralogical and geochemical outlines. Lithos 28:283–301. doi: 10.1016/0024-4937(92)90011-M CrossRefGoogle Scholar
  31. Cooper A (1979) Petrology of ocellar lamprophyres from western Otago, New Zealand. J Petrol 20:139–163Google Scholar
  32. Dalpè C, Baker DR (2000) Experimental Investigation of large-ion-lithophile-element-partitioning, high-field-strength-element-partitioning and rare-earth-element-partitioning between calcic Amphibole and basaltic melt: the effects of pressure and oxygen fugacity. Contrib Mineral Petrol 140:233–250. doi: 10.1007/s004100000181 CrossRefGoogle Scholar
  33. Deer WA, Howie RA, Zussman J (1997) Rock-forming minerals. 2B. Double chain silicates. The Geological Society, LondonGoogle Scholar
  34. Delor CP, Rock NMS (1991) Alkaline-ultramafic lamprophyre dykes from the Vestfold Hills, Princess Elizabeth Land (East Antarctica): primitive magmas of deep mantle origin. Antarct Sci 3:419–432. doi: 10.1017/S0954102091000512 CrossRefGoogle Scholar
  35. DePaolo DJ (1981) Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. Earth Planet Sci Lett 53:189–202. doi: 10.1016/0012-821X(81)90153-9 CrossRefGoogle Scholar
  36. Donaldson CH (1977) Kaersutite overgrowths on highly aluminous titanaugite in the Quarsut Sill. Mineral Mag (Lond) 41:297–300. doi: 10.1180/minmag.1977.041.318.21 CrossRefGoogle Scholar
  37. Dorais MJ, MacRae ND (1994) Amphibole zoning in the Garland Peak Syenite, Red Hill complex, New Hamsphire: camptonitic parental magmas and differentiation to silcia-oversaturated syenites. Contrib Mineral Petrol 117:76–86. doi: 10.1007/BF00307731 CrossRefGoogle Scholar
  38. Dostal J, Dupuy C, Carron JP, Dekerneizon ML, Maury RC (1983) Partition coefficients of trace elements: application to volcanic rocks of St. Vincent, West Indies. Geochim Cosmochim Acta 47:525–533. doi: 10.1016/0016-7037(83)90275-2 CrossRefGoogle Scholar
  39. Downes H, Beard A, Hinton R (2004) Natural experimental charges: an ion-microprobe study of trace element distribution coefficients in glass-rich hornblendite and clinopyroxenite xenoliths. Lithos 75:1–17. doi: 10.1016/j.lithos.2003.12.013 CrossRefGoogle Scholar
  40. Edgar AD, Vukadinovic D (1992) Implications of experimental petrology to the evolution of ultrapotassic rocks. Lithos 28:205–220. doi: 10.1016/0024-4937(92)90007-L CrossRefGoogle Scholar
  41. Elkins-Tanton LT, Grove TL (2003) Evidence for deep melting of hydrous metasomatized mantle: Pliocene high-potassium magmas from the Sierra Nevadas. J Geophys Res 108:ECV 9.1–ECV 9.19. doi: 10.1029/2002JB002168 CrossRefGoogle Scholar
  42. Esperança S, Holloway JR (1986) The origin of the high-K latites from Camp Creek, Arizona: constraints from experiments with variable fO2 and aH2O. Contrib Mineral Petrol 93:504–512. doi: 10.1007/BF00371720 CrossRefGoogle Scholar
  43. Esperança S, Holloway JR (1987) On the origin of some mica-lamprophyres: experimental evidence from a mafic minette. Contrib Mineral Petrol 95:207–216. doi: 10.1007/BF00381270 CrossRefGoogle Scholar
  44. Farias P, Gallastegui G, González-Lodeiro F, Marquínez J, Martín-Parra LM, Martínez-Catalán JR, de Pablo-Maciá JG, Rodríguez-Fernández LR (1987) Aportaciones al conocimiento de la litoestatigrafía y estructura de Galicica Central. Mem Museu e Lab Miner Geol, Fac Ciências. Univ Porto 1:411–431Google Scholar
  45. Faure G (1977) Principles of isotope geology. Wiley, LondonGoogle Scholar
  46. Feig ST, Koepke J, Snow JE (2006) Effect of water on tholeiitic basalt phase equilibria: an experimental study under oxidizing conditions. Contrib Mineral Petrol 152:611–638CrossRefGoogle Scholar
  47. Foley S (1992) Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28:187–204. doi: 10.1016/0024-4937(92)90006-K CrossRefGoogle Scholar
  48. Garcia MO, Muenow DW, Liu NWK (1980) Volatiles in high-Ti amphibole megacrysts, Southwest USA. Am Mineral 65:306–312Google Scholar
  49. Gerke TL, Kilinc AI, Sack RO (2005) Ti-content of high-Ca pyroxenes as a petrogenetic indicator: an experimental study of Mafic alkaline rocks from the Mt. Erebus volcanic region, Antarctica. Contrib Mineral Petrol 148:735–745. doi: 10.1007/s00410-004-0636-5 CrossRefGoogle Scholar
  50. Geschwind CH, Rutherford JM (1992) Cummingtonite and the evolution of the Mount St. Helens (Washington) magma system: an experimental study. Geology 20:1011–1014. doi:10.1130/0091-7613(1992)020<1011:CATEOT>2.3.CO;2CrossRefGoogle Scholar
  51. Gilbert MC, Helz RT, Popp RK, Spear FS (1982) Experimental studies of amphibole stability: Mineralogical Society of America. Rev Mineral Geochem 9B:231–268Google Scholar
  52. Gourgaud A, Vincent PM (2004) Petrology of two continental alkaline intraplate series at Emi Koussi volcano, Tibesti, Chad. J Volcanol Geotherm Res 129:261–290. doi: 10.1016/S0377-0273(03)00277-4 CrossRefGoogle Scholar
  53. Green DH, Falloon TJ (1998) Pyrolite: a ringwood concept and its current expression. In: The earth’s mantle: composition, structure and evolution. Cambridge University Press, London, pp 311–380Google Scholar
  54. Grove TL, Bryan WB (1983) Fractionation of pyroxene–phyric MORB at low pressure: an experimental study. Contrib Mineral Petrol 84:293–309CrossRefGoogle Scholar
  55. Grove TL, Juster TC (1989) Experimental investigations of low-Ca pyroxene stability and olivine–pyroxene–liquid equilibria at 1-atmosphere in natural basaltic and andesitic liquids. Contrib Mineral Petrol 103:287–305CrossRefGoogle Scholar
  56. Grove TL, Kinzler RJ (1986) Petrogenesis of andesites. Annu Rev Earth Planet Sci 14:417–454. doi: 10.1146/annurev.ea.14.050186.002221 CrossRefGoogle Scholar
  57. Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of mid-ocean ridge basalt (MORB). Am Geophys Union. Geophys Monogr 71:281–310Google Scholar
  58. Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N California. Contrib Mineral Petrol 127:205–223. doi: 10.1007/s004100050276 CrossRefGoogle Scholar
  59. Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533. doi: 10.1007/s00410-003-0448-z CrossRefGoogle Scholar
  60. Guo J, Gree TH (1990) Experimental study of barium partitioning between phlogopite and silicate liquid at upper-mantle pressure and temperature. Lithos 24:83–95. doi: 10.1016/0024-4937(90)90018-V CrossRefGoogle Scholar
  61. Harms E, Gardner JE, Schmincke HU (2004) Phase equilibria of the Lower Laacher See Tephra (East Eifel, Germany): constraints on pre-eruptive storage conditions of a phonolitic magma reservoir. J Volcanol Geotherm Res 134:125–138. doi: 10.1016/j.jvolgeores.2004.01.009 CrossRefGoogle Scholar
  62. Helz RT (1973) Phase relations of basalts in their melting range at PH2O = 5 kbar as a function of oxygen fugacity. 1. Mafic phases. J Petrol 14:249–302Google Scholar
  63. Helz RT (1979) Alkali exchange between hornblende and melt-temperature sensitive reaction. Am Mineral 64:953–965Google Scholar
  64. Hewitt DA, Wones DR (1984) Phase equilibria of the micas. In: Bailey, SW (ed) Micas. Mineralogical Society of America, Reviews in mineralogy, vol 13, pp 201–256Google Scholar
  65. Hirata T, Nesbitt RW (1995) U–Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochim Cosmochim Acta 59:2491–2500. doi: 10.1016/0016-7037(95)00144-1 CrossRefGoogle Scholar
  66. Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole–plagioclase thermometry. Contrib Mineral Petrol 116:433–447. doi: 10.1007/BF00310910 CrossRefGoogle Scholar
  67. Holloway JR, Burnham CW (1972) Melting relations of basalt with equilibrium water pressure less than total pressure. J Petrol 13:1–29Google Scholar
  68. Holtz F, Johannes W (1991) Genesis of peraluminous granites I. Experimental investigation of melt compositions at 3 and 5 kbar and various H2O activities. J Petrol 32:935–958Google Scholar
  69. Holtz F, Sato H, Lewis J, Behrens H, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen Dacite, Japan. Part I: phase relations, phase composition, and pre-eruptive conditions. J Petrol 46:319–337CrossRefGoogle Scholar
  70. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548Google Scholar
  71. Irving AJ, Frey FA (1984) Trace element abundances in megacrysts and their host basalts: constraints on partition coefficients and megacryst genesis. Geochim Cosmochim Acta 48:1201–1221. doi: 10.1016/0016-7037(84)90056-5 CrossRefGoogle Scholar
  72. Izbekov P, Gardner JE, Eichelberger JC (2004) Comagmatic granophyre and dacite from Karymsky volcanic center, Kamchatka: experimental constraints for magma storage conditions. J Volcanol Geotherm Res 131:1–18. doi: 10.1016/S0377-0273(03)00312-3 CrossRefGoogle Scholar
  73. Juster CT, Grove TL, Perfit MR (1989) Experimental constraints on the generation of FeTi basalts, andesite, and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W. J Geophys Res 94:9251–9274CrossRefGoogle Scholar
  74. Kägi R, Müntener O, Ulmer P, Ottolini L (2005) Piston-cylinder experiments on H2O undersaturated Fe-bearing systems: an experimental setup approaching fO2 conditions of natural calc-alkaline magmas. Am Mineral 90:708–717CrossRefGoogle Scholar
  75. Kaszuba JP, Wendlandt RF (2000) Effect of carbon dioxide on dehydration melting reactions and melt compositions in the lower crust and the origin of alkaline rocks. J Petrol 41:363–386. doi: 10.1093/petrology/41.3.363 CrossRefGoogle Scholar
  76. Kawamoto T (1996) Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett 144:577–589CrossRefGoogle Scholar
  77. Kelemen PB, Hanghoj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust. Treatise on geochemistry. Elsevier, Amsterdam, pp 593–659Google Scholar
  78. Kennedy AK, Grove TL, Johnson RW (1990) Experimental and major element constraints on the evolution of lavas from Lihir Island, Papua New Guinea. Contrib Mineral Petrol 104:722–734CrossRefGoogle Scholar
  79. Kesson S, Price RC (1972) The major and trace element chemistry of kaersutite and its bearing on the petrogenesis of alkaline rocks. Contrib Mineral Petrol 35:119–124. doi: 10.1007/BF00370923 CrossRefGoogle Scholar
  80. Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J Geophys Res 97:6885–6906CrossRefGoogle Scholar
  81. Kjarsgaard BA (1998) Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. J Petrol 39:2061–2075CrossRefGoogle Scholar
  82. King PL, Hervig RL, Holloway JR, Vennemann TW, Righter K (1999) Oxy-substitution and dehydrogenation in mantle-derived amphibole megacrysts. Geochim Cosmochim Acta 63:3635–3651. doi: 10.1016/S0016-7037(99)00162-3 CrossRefGoogle Scholar
  83. King PL, Hervig RL, Holloway JR, Delaney JS, Dyar MD (2000) Partitioning of Fe3+/Fe-total between amphibole and Basanitic melt as a function of oxygen fugacity. Earth Planet Sci Lett 178:97–112. doi: 10.1016/S0012-821X(00)00071-6 CrossRefGoogle Scholar
  84. Kinzler RJ, Donnelly-Nolan JM, Grove TL (2000) Late Holocene hydrous mafic magmatism at the Paint Pot Crater and Callahan fows, Medicine Lake Volcano, N. California and the influence of H2O in the generation of silicic magmas. Contrib Mineral Petrol 138:1–16. doi: 10.1007/PL00007657 CrossRefGoogle Scholar
  85. Kyle PR (1981) Mineralogy and geochemistry of a basanite to phonolite sequence at Hut Point Peninsula, Antarctica, based on cores from Dry Valley Drilling Project drillholes 1, 2 and 3. J Petrol 22:451–500Google Scholar
  86. Lange RA, Carmichael ISE (1996) The Aurora volcanic field, California, Nevada: oxygen fugacity constraints on the development of andesitic magma. Contrib Mineral Petrol 125:167–185. doi: 10.1007/s004100050214 CrossRefGoogle Scholar
  87. Larsen JG (1981) Medium pressure crystallization of a monchiquitic magma; evidence from megacrysts of Drever’s Block, Ubekendt Ejland, West Greenland. Lithos 14:241–262. doi: 10.1016/0024-4937(81)90053-0 CrossRefGoogle Scholar
  88. LaTourrete T, Herving RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci Lett 135:13–30. doi: 10.1016/0012-821X(95)00146-4 CrossRefGoogle Scholar
  89. Legendre C, Maury RC, Caroff M, Guillou H, Cotten J, Chauvel C, Bollinger C, Hemond C, Guille G, Blais S, Rossi P, Savanier D (2005) Origin of exceptionally abundant phonolites on Ua Pou Island (Marquesas, French Polynesia): Partial melting of basanites followed by crustal contamination. J Petrol 46:1925–1962. doi: 10.1093/petrology/egi043 CrossRefGoogle Scholar
  90. LeMaitre RW (1989) A classification of igneous rocks and glossary of terms. Recommendations of the International Union of Geological Sciences, subcommision on the systematics of igneous rocks. Blackwell, Oxford, p 193Google Scholar
  91. Leterrier J, Maury RC, Thonon P, Girard D, Marchal M (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of Paleo-volcanic series. Earth Planet Sci Lett 59:139–154. doi: 10.1016/0012-821X(82)90122-4 CrossRefGoogle Scholar
  92. Luhr JF, Carmichael ISE (1980) The Colima Volcanic Complex, Mexico I. Post-caldera andesites from Volcán Colima. Contrib Mineral Petrol 71:343–372. doi: 10.1007/BF00374707 CrossRefGoogle Scholar
  93. Luhr JF, Carmichael ISE (1985) Jorullo Volcano, Michoacán, Mexico (1759–1774): the earliest stages of fractionation in calc-alkaline magmas. Contrib Mineral Petrol 90:142–161. doi: 10.1007/BF00378256 CrossRefGoogle Scholar
  94. Mahood GA, Baker DR (1986) Experimental constraints on depths of fractionation of mildly alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily. Contrib Mineral Petrol 93:251–264CrossRefGoogle Scholar
  95. Martin RF (2007) Amphiboles in the igneous environment: Mineralogical Society of America. Rev Mineral Geochem 67:323–358. doi: 10.2138/rmg.2007.67.9 CrossRefGoogle Scholar
  96. Martel C, Pichavant M, Holtz F, Scaillet B, Bourdier J, Traineau H (1999) Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar. J Geophys Res 104:29453–29470CrossRefGoogle Scholar
  97. Martínez-Catalán JR, Poyatos D, Bea F (2004) La Zona Centroibérica. In: Vera JA (ed) Geología de España. SGE-IGME, Madrid, pp 68–133Google Scholar
  98. Matson DW, Muenow DW, Garcia MO (1984) Volatiles in amphiboles from xenoliths, Vulcan’s Throne, Grand Canyon, Arizona, USA. Geochim Cosmochim Acta 48:1629–1636. doi: 10.1016/0016-7037(84)90332-6 CrossRefGoogle Scholar
  99. Meen JK (1987) Formation of shoshonites from calcalkaline basalt magmas: geochemical and experimental constraints from the type locality. Contrib Mineral Petrol 97:333–351. doi: 10.1007/BF00371997 CrossRefGoogle Scholar
  100. Meen JK (1990) Elevation of potassium content of basaltic magma by fractional crystallization: the effect of pressure. Contrib Mineral Petrol 104:309–331CrossRefGoogle Scholar
  101. Medard E, Schmidt MW, Schiano P (2004) Liquidus surfaces of ultracalcic primitive melts: formation conditions and sources. Contrib Mineral Petrol 148:201–215CrossRefGoogle Scholar
  102. Mikhalsky EV, Sheraton JW (1993) Association of dolerite and lamprophyre dykes, Jetty Peninsula (Prince Charles Mountains, East Antarctica). Antarct Sci 5:297–307. doi: 10.1017/S0954102093000392 CrossRefGoogle Scholar
  103. Mitchell RH (1990) A review of the compositional variation of amphiboles in alkaline plutonic complexes. Lithos 26:135–156. doi: 10.1016/0024-4937(90)90044-2 CrossRefGoogle Scholar
  104. Mitchell RH (1994) The lamprophyre facies. Mineral Petrol 51:137–146. doi: 10.1007/BF01159724 CrossRefGoogle Scholar
  105. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355Google Scholar
  106. Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes. Part II. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196. doi: 10.1007/s004100050302 CrossRefGoogle Scholar
  107. Moore G, Carmichael ISE (1998) The hydrous-phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Mineral Petrol 130:304–319CrossRefGoogle Scholar
  108. Montero P, Bea F, Zinger T (2004) Edad 207Pb/206Pb en cristal único de circón de las rocas máficas y ultramáficas del sector de Gredos, Batolito de Avila (Iberia Central). Rev Soc Geologica Esp 17:157–165Google Scholar
  109. Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658Google Scholar
  110. Naney MT (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am J Sci 283:993–1033Google Scholar
  111. Nekvasil H, Dondolini A, Horn J, Filiberto J, Long H, Lindsley DH (2004) The origin and evolution of silica-saturated alkalic suites: an experimental study. J Petrol 45:693–721. doi: 10.1093/petrology/egg103 CrossRefGoogle Scholar
  112. Orejana D, Villaseca C, Billström K, Paterson BA (2008) Petrogenesis of permian alkaline lamprophyres and diabases from the Spanish Central System and their geodynamic context within western Europe. Contrib Mineral Petrol 156:477–500. doi: 10.1007/s00410-008-0297-x CrossRefGoogle Scholar
  113. Parat F, Dungan MA, Lipman PW (2005) Contemporaneous trachyandesitic and calc-alkaline volcanism of the Huerto Andesite, San Juan volcanic field, Colorado, USA. J Petrol 46:859–891. doi: 10.1093/petrology/egi003 CrossRefGoogle Scholar
  114. Patiño-Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. J Petrol 36:707–738Google Scholar
  115. Pereira MD (1992) El Complejo Anatéctico de la Peña Negra (Batolito de Avila): Un estudio de la anatexia cortical en condiciones de baja presión. Ph.D. thesis, SalamancaGoogle Scholar
  116. Pereira MD (1998) P-T conditions of generation of the Peña Negra anatectic complex, central Spain. Petrology 6:555–563Google Scholar
  117. Perfit MR, Gust DA, Bence AE, Arculus RJ, Taylor SR (1980) Chemical characteristics of island-arc basalts: implications for mantle sources. Chem Geol 30:227–256. doi: 10.1016/0009-2541(80)90107-2 CrossRefGoogle Scholar
  118. Petermann M, Lundstrom CC (2006) Phase equilibrium experiments at 0.5 GPa and 1100–1300 °C on a basaltic andesite from Arenal volcano, Costa Rica. J Volcanol Geotherm Res 157:222–235CrossRefGoogle Scholar
  119. Pichavant M, Martel C, Bourdier JL, Scaillet B (2002) Physical conditions, structure, and dynamics of a zoned magma chamber: Mount Pelee (Martinique, Lesser Antilles Arc). J Geophys Res 107:1–25CrossRefGoogle Scholar
  120. Pitcher WS (1997) The nature and origin of granite. Chapman and Hall, LondonGoogle Scholar
  121. Powell R (1984) Inversion of assimilation and fractional crystallization (AFC) equations: characterization of contaminants from isotope and trace element relationships in volcanic suites. J Geol Soc London 141:447–452. doi: 10.1144/gsjgs.141.3.0447 CrossRefGoogle Scholar
  122. Prouteau G, Scaillet B (2003) Experimental constraints on the origin of the 1991 Pinatubo dacite. J Petrol 44:2203–2241. doi: 10.1093/petrology/egg075 CrossRefGoogle Scholar
  123. Putirka KD, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneopus rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Mineral Petrol 123:92–108CrossRefGoogle Scholar
  124. Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88:1542–1554Google Scholar
  125. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 36:891–931Google Scholar
  126. René M, Holtz F, Luo C, Beermann O, Stelling J (2007) Biotite stability in peraluminous granitic melts: compositional dependence and application to the generation of two-mica granites in the South Bohemian batholith (Bohemian Massif, Czech Republic). Lithos 102:538–553CrossRefGoogle Scholar
  127. Righter K, Carmichael ISE (1993) Mega-xenocrysts in alkali-olivine basalts: fragments of disrupted mantle assemblages. Am Mineral 78:1230–1245Google Scholar
  128. Righter K, Carmichael ISE (1996) Phase equilibria of phlogopite lamprophyres from western Mexico: biotite–liquid equilibria and P-T estimates for biotite-bearing igneous rocks. Contrib Mineral Petrol 123:1–21. doi: 10.1007/s004100050140 CrossRefGoogle Scholar
  129. Righter K, Rosas-Elguera J (2001) Alkaline lavas in the volcanic front of the western Mexican Volcanic Belt: geology and petrology of the Ayutla and Tapalpa volcanic fields. J Petrol 42:2333–2361. doi: 10.1093/petrology/42.12.2333 CrossRefGoogle Scholar
  130. Rock NMS (1991) Lamprophyres. Blackie, GlasgowGoogle Scholar
  131. Romiek JD, Kay SM, Kay RW (1992) The influence of amphibole fractionation on the evolution of calc-alkaline andesite and dacite tephra from the central Aleutians, Alaska. Contrib Mineral Petrol 112:101–118. doi: 10.1007/BF00310958 CrossRefGoogle Scholar
  132. Rutherford MJ, Devine JD (1988) The May 18, 1980 eruption of Mount St. Helens Ill. Stability and chemistry of arnphibole in the magma chamber. J Geophys Res 93:11949–11959. doi: 10.1029/JB093iB10p11949 CrossRefGoogle Scholar
  133. Rutherford MJ, Devine JD (2003) Magmatic conditions and magma ascent as indicated by hornblende phase equilibria and reactions in the 1995–2002 Soufriere Hills magma. J Petrol 44:1433–1454. doi: 10.1093/petrology/44.8.1433 CrossRefGoogle Scholar
  134. Sack RO, Walker D, Carmichael ISE (1987) Experimental petrology of alkalic lavas: constraints on cotectics of multiple saturation in natural basic liquids. Contrib Mineral Petrol 96:1–23CrossRefGoogle Scholar
  135. Sato H, Holtz F, Behrens H, Botcharnikov R, Nakada S (2005) Experimental petrology of the 1991–1995 Unzen dacite, Japan. Part II: Cl/OH partitioning between hornblende and melt and its implications for the origin of oscillatory zoning of hornblende phenocrysts. J Petrol 46:339–354. doi: 10.1093/petrology/egh078 CrossRefGoogle Scholar
  136. Scaillet B, Evans BW (1999) The 15 June 1991 Eruption of Mount Pinatubo. I. Phase Equilibria and pre-eruption P–T–fO2–fH2O conditions of the dacite magma. J Petrol 40:381–411CrossRefGoogle Scholar
  137. Scarrow JH, Bea F, Montero P, Molina JF, Vaughan APM (2006) A precise late Permian 40Ar/39Ar age for Central Iberian camptonitic lamprophyres. Geol Acta 4:451–460Google Scholar
  138. Scarrow JH, Molina JF, Bea F, Montero P (2008) Within-plate calc-alkaline rocks: insight from alkaline mafic magma-peraluminous crustal melt hybrid appinites of Central Iberian Variscan continental collision. Lithos (in press)Google Scholar
  139. Scoates JS, Lo Cascio M, Weis D, Lindsley DH (2006) Experimental constraints on the origin and evolution of mildly alkalic basalts from the Kerguelen Archipelago, Southeast Indian Ocean. Contrib Mineral Petrol 151:582–599CrossRefGoogle Scholar
  140. Schmidt MW, Thompson AB (1996) Epidote in calc-alkaline magmas: an experimental study of stability, phase relationships, and the role of epidote in magmatic evolution. Am Mineral 81:462–474Google Scholar
  141. Schmidt KH, Bottazzi P, Vannucci R, Mengel K (1999) Trace element partitioning between phlogopite, clinopyroxene and leucite lamproite melt. Earth Planet Sci Lett 168:287–299. doi: 10.1016/S0012-821X(99)00056-4 CrossRefGoogle Scholar
  142. Singh J, Johannes W (1996) Dehydration melting of tonalites. Part II. Composition of melts and solids. Contrib Mineral Petrol 125:26–44. doi: 10.1007/s004100050204 CrossRefGoogle Scholar
  143. Sisson TW (1994) Hornblende melt trace element partitioning measured by ion microprobe. Chem Geol 117:331–344. doi: 10.1016/0009-2541(94)90135-X CrossRefGoogle Scholar
  144. Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166. doi: 10.1007/BF00283225 CrossRefGoogle Scholar
  145. Skjerlie KP, Johnston AD (1996) Vapour-absent melting from 10–20 kbar of crustal rocks that contain multiple hydrous phases: implications for anatexis in the deep to very deep continental crust and active continental margins. J Petrol 37:661–691. doi: 10.1093/petrology/37.3.661 CrossRefGoogle Scholar
  146. Statacorp. (2005) Stata Statistical Software, Release 9. College Station, TX, StataCorp LPGoogle Scholar
  147. Stolper E (1980) A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib Mineral Petrol 74:13–27CrossRefGoogle Scholar
  148. Thy P (1991) High and low pressure phase equilibria of a mildly alkalic lava from the 1965 Surtsey eruption: experimental results. Lithos 26:223–243. doi: 10.1016/0024-4937(91)90030-O CrossRefGoogle Scholar
  149. Thy P, Lesher CE, Fram MS ( 2004) Low Pressure experimental constraints on the evolution of basaltic lavas from site 917, southeast Greenland continental margin. Ocean Drill Proc Sci Results 152:359–372Google Scholar
  150. Tiepolo M, Vannucci R, Bottazzi P, Oberti R, Zanetti A, Foley S (2000) Partitioning of rare earth elements, Y, Th, U, and Pb between pargasite, kaersutite, and basanite to trachyte melts: implications for percolated and veined mantle. Geochem Geophys Geosyst G3:1Google Scholar
  151. Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace-element partitioning between amphibole and silicate melt: Mineralogical Society of America. Rev Mineral Geochem 67:417–452. doi: 10.2138/rmg.2007.67.11 CrossRefGoogle Scholar
  152. Tormey DR, Grove TL, Bryan WB (1987) Experimental petrology of normal MORB near the Kane Fracture Zone: 22º–25º N, mid-Atlantic ridge. Contrib Mineral Petrol 96:121–139CrossRefGoogle Scholar
  153. Ulmer P (2001) Partial melting in the mantle wedge: the role of H2O in the genesis of mantle-derived “arc-related” magmas. Phys Earth Planet Int 127:215–232. doi: 10.1016/S0031-9201(01)00229-1 CrossRefGoogle Scholar
  154. Ulmer P (2007) Differentiation of mantle-derived calc-alkaline magmas and mid to lower crustal levels: experimental and petrologic constraints. Minerva 76:309–325Google Scholar
  155. Villiger S, Ulmer P, Müntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization: an experimental study at 1.0 GPa. J Petrol 45:2369–2388CrossRefGoogle Scholar
  156. Villiger S, Ulmer P, Müntener O (2007) Equilibrium and fractional crystallization experiments at 07 GPa: the effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J Petrol 48:159–184. doi: 10.1093/petrology/egl058 CrossRefGoogle Scholar
  157. Wagner C, Mokhtari A, Deloule E, Chabaux F (2003) Carbonatite and alkaline magmatism in Taourirt (Morocco): petrological, geochemical and Sr–Nd isotope characteristics. J Petrol 44:937–965. doi: 10.1093/petrology/44.5.937 CrossRefGoogle Scholar
  158. Wallace P, Carmichael ISE (1992) Alkaline and calc-alkaline lavas near Los Volcanes, Jalisco, Mexico: geochemical diversity and its significance in volcanic arcs. Contrib Mineral Petrol 111:423–439. doi: 10.1007/BF00320899 CrossRefGoogle Scholar
  159. Whitaker ML, Nekvasil H, Lindsley DH, DiFrancesco NJ (2007) The role of pressure in producing compositional diversity in intraplate basaltic magmas. J Petrol 48:365–393. doi: 10.1093/petrology/egl063 CrossRefGoogle Scholar
  160. Wilkinson JFG (1974) The mineralogy and petrography of alkali basaltic rocks. The alkaline rocks. Wiley, New York, pp 67–95Google Scholar
  161. Wilkinson JFG, Hensel HD (1991) An analcime mugearite–megacryst association from northeastern New South Wales: implications for high-pressure amphibole-dominated fractionation of alkaline magmas. Contrib Mineral Petrol 109:240–251. doi: 10.1007/BF00306482 CrossRefGoogle Scholar
  162. Wilson M (1989) Igneous petrogenesis. A global tectonic approach. Unwin Hyman, LondonCrossRefGoogle Scholar
  163. Winter JD (2001) Igneous and metamorphic petrology. Prentice HallGoogle Scholar
  164. Wones DR, Gilbert MC (1982) Amphiboles in the igneous environment. In: Veblen DR, Ribbe PH (eds) Amphiboles: petrology and experimental phase relations. Mineralogical Society of America, Reviews in Mineralogy, vol 9B, pp 355–390Google Scholar
  165. Wood BJ, Trigila R (2001) Experimental determination of aluminous clinopyroxene-melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chem Geol 172: 213-223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • José F. Molina
    • 1
  • Jane H. Scarrow
    • 1
  • Pilar G. Montero
    • 1
  • Fernando Bea
    • 1
  1. 1.Department of Mineralogy and Petrology, Campus FuentenuevaUniversity of GranadaGranadaSpain

Personalised recommendations