Contributions to Mineralogy and Petrology

, Volume 158, Issue 1, pp 37–51 | Cite as

Graphite morphologies from the Borrowdale deposit (NW England, UK): Raman and SIMS data

  • J. F. Barrenechea
  • F. J. Luque
  • D. Millward
  • L. Ortega
  • O. Beyssac
  • M. Rodas
Original Paper

Abstract

Graphite in the Borrowdale (Cumbria, UK) deposit occurs as large masses within mineralized pipe-like bodies, in late graphite–chlorite veins, and disseminated through the volcanic host rocks. This occurrence shows the greatest variety of crystalline graphite morphologies recognized to date from a single deposit. These morphologies described herein include flakes, cryptocrystalline and spherulitic aggregates, and dish-like forms. Colloform textures, displayed by many of the cryptocrystalline aggregates, are reported here for the first time from any graphite deposit worldwide. Textural relationships indicate that spherulitic aggregates and colloform graphite formed earlier than flaky crystals. This sequence of crystallization is in agreement with the precipitation of graphite from fluids with progressively decreasing supersaturation. The structural characterization carried out by means of Raman spectroscopy shows that, with the exception of colloform graphite around silicate grains and pyrite within the host rocks, all graphite morphologies display very high crystallinity. The microscale SIMS study reveals light stable carbon isotope ratios for graphite (δ13C = −34.5 to −30.2‰), which are compatible with the assimilation of carbon-bearing metapelites in the Borrowdale Volcanic Group magmas. Within the main mineralized breccia pipe-like bodies, the isotopic signatures (with cryptocrystalline graphite being lighter than flaky graphite) are consistent with the composition and evolution of the mineralizing fluids inferred from fluid inclusion data which indicate a progressive loss of CO2. Late graphite–chlorite veins contain isotopically heavier spherulitic graphite than flaky graphite. This agrees with CH4-enriched fluids at this stage of the mineralizing event, resulting in the successive precipitation of isotopically heavier graphite morphologies. The isotopic variations of the different graphite morphologies can be attributed therefore, to changes in the speciation of carbon in the fluids coupled with concomitant changes in the XH2O during precipitation of graphite and associated hydrous minerals (mainly epidote and chlorite).

Keywords

Graphite Morphology Raman Carbon isotopes Borrowdale 

References

  1. Barrenechea JF, Luque FJ, Rodas M, Pasteris JD (1997) Vein-type graphite mineralization in the Jurassic volcanic rocks of the external zone of the Betic Cordillera (Southern Spain). Can Mineral 35:1379–1390Google Scholar
  2. Barrenechea JF, Luque FJ, Ortega L, Rodas M, Millward D, Beyssac O (2008) Graphite morphologies in the volcanic-hosted deposit at Borrowdale (NW England, UK): preliminary Raman and SIMS data. Macla 9:91–92Google Scholar
  3. Beny-Bassez C, Rouzaud J-N (1985) Characterization of carbonaceous materials by correlated electron optical microscopy and Raman microspectroscopy. Scan Electron Microsc 1985:119–132Google Scholar
  4. Beyssac O, Goffé B, Chopin C, Rouzaud J-N (2002) Raman spectra of carbonaceous materials in metasediments: a new geothermometer. J Metamorphic Geol 20:859–871CrossRefGoogle Scholar
  5. Beyssac O, Goffé B, Petitet JP, Froigneux E, Moreau M, Rouzaud J-N (2003) On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 59:2267–2276. doi:10.1016/S1386-1425(03)00070-2 CrossRefGoogle Scholar
  6. Bottinga Y (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite–carbon dioxide–graphite–methane–hydrogen–water vapor. Geochim Cosmochim Acta 33:49–64. doi:10.1016/0016-7037(69)90092-1 CrossRefGoogle Scholar
  7. Cooper DC, Lee MK, Fortey NJ, Cooper AH, Rundle CC, Webb BC, Allen PM (1988) The Crummock water aureole: a zone of metasomatism and source of ore metals in the English Lake District. J Geol Soc London 145:523–540. doi:10.1144/gsjgs.145.4.0523 CrossRefGoogle Scholar
  8. Cooper AH, Rushton AWA, Molyneux SG, Hughes RA, Moore RM, Webb BC (1995) The stratigraphy, correlation, provenance and paleogeography of the Skiddaw Group (Ordovician) in the English Lake District. Geol Mag 132:185–211CrossRefGoogle Scholar
  9. Cooper CA, Elliot R, Young RJ (2003) Investigation of the graphitic microstructure in flake and spheroidal cast irons using Raman spectroscopy. J Mater Sci 38:795–802. doi:10.1023/A:1021813115611 CrossRefGoogle Scholar
  10. Cooper AH, Fortey NJ, Hughes RA, Molyneux SG, Moore RM, Rushton AWA, Stone P, Allen PM, Cooper DC, Evans JA, Hirons SR, Webb BC (2004) The Skiddaw Group of the English Lake District. Memoir of the British Geological Survey. HMSO, LondonGoogle Scholar
  11. Coplen TB, Brand WA, Gehre M, Gröning M, Meijer HAJ, Toman B, Verkouteren RM (2006) New guidelines for δ 13C measurements. Anal Chem 78:2439–2441. doi:10.1021/ac052027c CrossRefGoogle Scholar
  12. Crespo E, Luque J, Rodas M, Wada H, Gervilla F (2006) Graphite–sulfide deposits in Ronda and Beni Bousera peridotites (Spain and Morocco) and the origin of carbon in mantle-derived rocks. Gondwana Res 9:279–290. doi:10.1016/j.gr.2005.10.003 CrossRefGoogle Scholar
  13. Doroshkevich AG, Wall F, Ripp GS (2007) Magmatic graphite in dolomite carbonatite at Pogranichnoe, North Transbaikalia, Russia. Contrib Mineral Petrol 153:339–353. doi:10.1007/s00410-006-0150-z CrossRefGoogle Scholar
  14. Double DD, Hellawell A (1974) Cone-helix growth forms of graphite. Acta Metall 22:481–487. doi:10.1016/0001-6160(74)90101-1 CrossRefGoogle Scholar
  15. Double DD, Hellawell A (1995) The nucleation and growth of graphite: the modification of cast iron. Acta Metall Mater 43:2435–2442. doi:10.1016/0956-7151(94)00416-1 CrossRefGoogle Scholar
  16. Duke EF, Rumble D (1986) Textural and isotopic variations in graphite from plutonic rocks, South-Central New Hampshire. Contrib Miner Petrol 93:409–419. doi:10.1007/BF00371711 CrossRefGoogle Scholar
  17. El Goresy A, Zinner E, Pellas P, Caillet C (2005) A menagerie of graphite morphologies in the Acapulco meteorite with diverse carbon and nitrogen isotopic signatures: implications for the evolution history of acapulcoite meteorites. Geochim Cosmochim Acta 69:4535–4556. doi:10.1016/j.gca.2005.03.051 CrossRefGoogle Scholar
  18. Fitton JG (1972) The genetic significance of almandine–pyrope phenocrysts in the calc-alkaline Borrowdale Volcanic Group, northern England. Contrib Miner Petrol 36:231–248. doi:10.1007/BF00371434 CrossRefGoogle Scholar
  19. Frost BR (1979) Mineral equilibria involving mixed-volatiles in a C–O–H fluid phase: the stabilities of graphite and siderite. Am J Sci 279:1033–1059Google Scholar
  20. Gellatly DC (1966) Graphite in natural and experimental carbonate systems. Min Mag (Lond) 35:963–970. doi:10.1180/minmag.1966.035.275.08 CrossRefGoogle Scholar
  21. Gogotsi Y, Libera JA, Kalashnikov N, Yoshimura M (2000) Graphite polyhedral crystals. Science 290:317–320. doi:10.1126/science.290.5490.317 CrossRefGoogle Scholar
  22. Grew ES (1974) Carbonaceous materials in some metamorphic rocks of New England and other areas. J Geol 82:50–73CrossRefGoogle Scholar
  23. Jaszczak JA (1995) Graphite: flat, fibrous and spherical. In: Mendenhall GD (ed) Mesomolecules: from molecules to materials. Chapman and Hall, LondonGoogle Scholar
  24. Jaszczak JA, Robinson GW, Dimovski S, Gogotsi Y (2003) Naturally occurring graphite cones. Carbon 41:2085–2092. doi:10.1016/S0008-6223(03)00214-8 CrossRefGoogle Scholar
  25. Jaszczak JA, Dimovski S, Hackney SA, Robinson GW, Bosio P, Gogotsi Y (2007) Micro- and nanoscale graphite cones and tubes from Hackman Valley, Kola Peninsula, Russia. Can Mineral 45:379–389. doi:10.2113/gscanmin.45.2.379 CrossRefGoogle Scholar
  26. Jedwab J, Boulegue J (1984) Graphite crystals in hydrothermal vents. Nature 310:41–43. doi:10.1038/310041a0 CrossRefGoogle Scholar
  27. Katz MB (1987) Graphite deposits of Sri Lanka: a consequence of granulite facies metamorphism. Miner Depos 22:18–25. doi:10.1007/BF00204238 CrossRefGoogle Scholar
  28. Kavanagh A, Schlogl R (1988) The morphology of some natural and synthetic graphites. Carbon 26:23–32. doi:10.1016/0008-6223(88)90005-X CrossRefGoogle Scholar
  29. Kvasnitsa VN, Yatsenko VG, Jaszczak JA (1999) Disclinations in unusual graphite crystals from anorthosites of Ukraine. Can Mineral 37:951–960Google Scholar
  30. Kwiecinska B (1980) Mineralogy of natural graphites. Polska Akad Nauk Prace Miner 67:5–79Google Scholar
  31. Lespade P, Al-Jishi R, Dresselhaus MS (1982) Model for Raman scattering from incompletely graphitized carbons. Carbon 20:427–431. doi:10.1016/0008-6223(82)90043-4 CrossRefGoogle Scholar
  32. Liou JG (1993) Stabilities of natural epidotes. In: Hock V and Koller F (eds). Proc 125  Jahre Kappenwand symposium, pp 7–16Google Scholar
  33. Lowry D, Boyce AJ, Pattrick RAD, Fallick AE, Stanley CJ (1991) A sulphur isotopic investigation of the potential sulphur sources for Lower Palaeozoic-hosted vein mineralization in the English Lake District. J Geol Soc London 148:993–1004. doi:10.1144/gsjgs.148.6.0993 CrossRefGoogle Scholar
  34. Luque FJ, Pasteris JD, Wopenka B, Rodas M, Barrenechea JF (1998) Natural fluid-deposited graphite: mineralogical characteristics and mechanisms of formation. Am J Sci 298:471–498Google Scholar
  35. Luque FJ, Ortega L, Barrenechea JF, Millward D, Beyssac O, Huizenga J-M (2009) Deposition of highly crystalline graphite from moderate-temperature fluids. Geology (in press)Google Scholar
  36. McConnell BJ, Menuge JF, Hertogen J (2002) Andesite petrogenesis in the Ordovician Borrowdale Volcanic Group of the English Lake District by fractionation, assimilation and mixing. J Geol Soc London 159:417–424. doi:10.1144/0016-764901-114 CrossRefGoogle Scholar
  37. Millward D (2004) The Caradoc volcanoes of the English Lake District. Proc Yorks Geol Soc 55:73–105Google Scholar
  38. Mostefaoui S, Perron C, Zinner E, Sagon G (2000) Metal-associated carbon in primitive chondrites: structure, isotopic composition, and origin. Geochim Cosmochim Acta 64:1945–1964. doi:10.1016/S0016-7037(99)00409-3 CrossRefGoogle Scholar
  39. Mostefaoui S, Zinner E, Hoppe P, Stadermann FJ, El Goresy A (2005) In situ survey of graphite in unequilibrated chondrites: morphologies, C, N, O and H isotopic ratios. Meteorit Planet Sci 40:721–743CrossRefGoogle Scholar
  40. Ortega L, Luque J, Barrenechea JF, Millward D, Beyssac O, Huizenga J-M, Rodas M (2008) Fluid composition and reactions of graphite precipitation in the volcanic-hosted deposit at Borrowdale (NW England): evidence from fluid inclusions. Macla 9:177–178Google Scholar
  41. Östberg G (2006) Perspectives on research on the formation of nodular graphite in cast iron. Mater Des 27:1007–1015Google Scholar
  42. Pasteris JD (1989) In situ analysis in geological thin-sections by laser Raman microprobe spectroscopy: a cautionary note. App Spectr 43:567–570. doi:10.1366/0003702894202878 CrossRefGoogle Scholar
  43. Pasteris JD (1999) Causes of the uniformly high crystallinity of graphite in large epigenetic deposits. J metamorphic Geol 17:779–787CrossRefGoogle Scholar
  44. Pasteris JD, Wopenka B (1991) Raman spectra of graphite as indicators of degree of metamorphism. Can Mineral 29:1–9Google Scholar
  45. Pimenta MA, Dresselhaus G, Dresselhaus MS, Cancado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291. doi:10.1039/b613962k CrossRefGoogle Scholar
  46. Reich S, Thomsen C (2004) Raman spectroscopy of graphite. Philos Trans R Soc Lond A 362:2271–2288. doi:10.1098/rsta.2004.1454 CrossRefGoogle Scholar
  47. Rumble D, Ferry JM, Hoering TC, Boucot AJ (1982) Fluid flow during metamorphism at the Beaver Brook fossil locality, New Hampshire. Am J Sci 282:886–919Google Scholar
  48. Scheele N, Hoefs J (1992) Carbon isotope fractionation between calcite, graphite and CO2: an experimental study. Contrib Miner Petrol 112:35–45. doi:10.1007/BF00310954 CrossRefGoogle Scholar
  49. Strens RGJ (1965) The graphite deposit of Seathwaite in Borrowdale, Cumberland. Geol Mag 102:393–406CrossRefGoogle Scholar
  50. Sunagawa I (1987) Morphology of minerals. In: Sunagawa I (ed) Morphology of crystals, part B. Terra, Tokyo, pp 509–587Google Scholar
  51. Sunagawa I (2005) Crystals: growth, morphology and perfection. Cambridge University Press, CambridgeGoogle Scholar
  52. Tan PH, Dimovski S, Gogotsi Y (2004) Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones. Philos Trans R Soc Lond A 362:2289–2310. doi:10.1098/rsta.2004.1442 CrossRefGoogle Scholar
  53. Walton AG (1969) Nucleation in liquids and solutions. In: Zettlemoyer AC (ed) Nucleation. Marcel Dekker, New YorkGoogle Scholar
  54. Ward JC (1876) The geology of the northern part of the English Lake District. Memoir of the Geological Survey of Great Britain. Quarter Sheet 101SE (England and Wales Sheet 29, Keswick)Google Scholar
  55. Weis PL, Friedman I, Gleason JP (1981) The origin of epigenetic graphite: evidence from isotopes. Geochim Cosmochim Acta 45:2325–2332. doi:10.1016/0016-7037(81)90086-7 CrossRefGoogle Scholar
  56. Wopenka B, Pasteris JD (1993) Structural characterization of kerogens to granulite-facies graphite: applicability of Raman microprobe spectroscopy. Am Mineral 78:533–557Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • J. F. Barrenechea
    • 1
  • F. J. Luque
    • 1
  • D. Millward
    • 2
  • L. Ortega
    • 1
  • O. Beyssac
    • 3
  • M. Rodas
    • 1
  1. 1.Departamento Cristalografía y Mineralogía, Facultad de GeologíaUniversidad Complutense de MadridMadridSpain
  2. 2.British Geological SurveyEdinburghUK
  3. 3.Laboratoire de GéologieCNRSParisFrance

Personalised recommendations