The magmatic plumbing system beneath El Hierro (Canary Islands): constraints from phenocrysts and naturally quenched basaltic glasses in submarine rocks

  • Nicole A. Stroncik
  • Andreas Klügel
  • Thor H. Hansteen
Original Paper

Abstract

A thermobarometric and petrologic study of basanites erupted from young volcanic cones along the submarine portions of the three El Hierro rift zones (NE-Rift, NW-Rift and S-Ridge) has been performed to reconstruct magma plumbing and storage beneath the island. Mineral-melt thermobarometry applied to naturally quenched glass and clinopyroxene rims yields pressures ranging from 350 to 1070 MPa with about 80% of the calculated pressures being in the range of 600–800 MPa. This corresponds to a depth range of 19–26 km, implying that the main level of final crystal fractionation is within the uppermost mantle. No systematic dependence between sample locality and fractionation pressures could be observed. Olivine and clinopyroxene crystals in the rocks are complexly zoned and have, on an inter-sample as well as on an intra-sample scale, highly variable core and rim compositions. This can best be explained by mixing of multiply saturated (olivine, magnetite, clinopyroxene, ilmenite), moderately evolved magmas with more mafic magmas being either only saturated with olivine + spinel or with olivine + spinel + clinopyroxene. The inter-sample differences indicate derivation from small, isolated magma chambers which have undergone distinct fractionation and mixing histories. This is in contrast to oceanic intraplate volcanoes situated on plumes with high melt supply rates, e.g. Kilauea Volcano (Hawaii), where magma is mainly transported through a central conduit system and stored in a shallow magma chamber prior to injection into the rift zones. The plumbing system beneath El Hierro rather resembles the magma storage systems beneath, e.g. Madeira or La Palma, indicating that small, intermittent magma chambers might be a common feature of oceanic islands fed by plumes with relatively low fluxes, which results in only limited and periodic magma supply.

Keywords

El Hierro Magma conduit structure Barometry Magma chambers 

References

  1. Acosta J, Uchupi E, Smith D, Munoz A, Herranz P, Palomo C, Llanes P, Ballesteros M, Group ZW (2003) Comparison of volcanic rifts on La Palma and El Hierro, Canary Islands and the Island of Hawaii. Mar Geophys Res 24:59–90. doi:10.1007/s11001-004-1162-6 CrossRefGoogle Scholar
  2. Beattie P (1993) Olivine-melt and orthopyroxene-melt equilibria. Contrib Mineral Petrol 115:103–111. doi:10.1007/BF00712982 CrossRefGoogle Scholar
  3. Bryan SE, Marti J, Leosson M (2002) Petrology and geochemistry of the Bandas del Sur Formation, Las Canadas edifice, Tenerife (Canary Islands). J Petrol 43(10):1815–1856. doi:10.1093/petrology/43.10.1815 CrossRefGoogle Scholar
  4. Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J Volcanol Geotherm Res 94:1–19. doi:10.1016/S0377-0273(99)00095-5 CrossRefGoogle Scholar
  5. Carracedo JC, Day DE, Guillou H, Rodríguez Badiola E, Canas JA, Pérez Torrado FJ (1998) Hotspot volcanism close to a continental margin: the Canary Islands. Geol Mag 135(5):591–604. doi:10.1017/S0016756898001447 CrossRefGoogle Scholar
  6. Carracedo JC, Badiola ER, Guillou H, De La Nuez J, Pérez Torrado FJ (2001) Geology and volcanology of La Palma and El Hierro, Western Canaries. Estud Geologicos 57:175–273Google Scholar
  7. Cashman KV (1990) Textural constraints on the kinetics of crystallization of igneous rocks. In: Nicholls J, Russell JK (eds) Modern methods of igneous petrology: understanding magmatic processes, vol 24, Mineralogical Society of America, pp 259–314Google Scholar
  8. Clague DA (1987) Hawaiian xenolith populations, magma supply rates and development of magma chambers. Bull Volcanol 49:577–587. doi:10.1007/BF01079963 CrossRefGoogle Scholar
  9. Clague DA, Dalrymple GB (1987) The Hawaiian-Emperor volcanic chain. In: Decker RW, Wright TL, Stauffer PH (eds) Volcanism in Hawaii, vol 1350. US geological survey, pp 5–54Google Scholar
  10. Clague DA, Dixon JE (2000) Extrinsic controls on the evolution of Hawaiian ocean island volcanoes. Geochemistry, Geophysics, Geosystems-G (super 3) 1(Paper 1999GC000023)Google Scholar
  11. Clague DA, Moore JG, Dixon JE, Friesen WB (1995) Petrology of submarine lavas from Kilauea’s Puna Ridge, Hawaii. J Petrol 36:299–349Google Scholar
  12. Decker RW (1987) The dynamics of Hawaiian volcanoes: an overview. US Geol Surv Prof Pap 1350:997–1018Google Scholar
  13. Duda A, Schmincke HU (1985) Polybaric differentiation of alkali basalt magmas: evidence from green-core clinopyroxenes (Eifel, FRG). Contrib Mineral Petrol 91:340–353. doi:10.1007/BF00374690 CrossRefGoogle Scholar
  14. Duke JM (1976) Distribution of the period four transition elements among olivine, calcic clinopyroxene and mafic silicate liquid; experimental results. J Petrol 17(4):499–521Google Scholar
  15. Dunbar NW, Jacobs GK, Naney MT (1995) Crystallization processes in an artificial magma; variations in crystal shape, growth rate and composition with melt cooling history. Contrib Mineral Petrol 120(3–4):412–425. doi:10.1007/BF00306518 CrossRefGoogle Scholar
  16. Fisk MR, Upton BGJ, Ford CE, White WM (1988) Geochemical and experimental study of the genesis of magmas of Réunion Island, Indian Ocean. J Geophys Res 93:4933–4950. doi:10.1029/JB093iB05p04933 CrossRefGoogle Scholar
  17. Fiske RF, Jackson E (1972) Orientation and growth of Hawaiian volcanic rifts: the effect of regional structure and gravitational stresses. Proc R Soc Lond A Math Phys Sci 329:299–326. doi:10.1098/rspa.1972.0115 CrossRefGoogle Scholar
  18. Galipp K, Klügel A, Hansteen TH (2006) Changing depths of magma fractionation and stagnation during the evolution of an oceanic island volcano: La Palma (Canary Islands). J Volcanol Geotherm Res 155:285–300. doi:10.1016/j.jvolgeores.2006.04.002 CrossRefGoogle Scholar
  19. Garcia MO, Ho RA, Rhodes JM, Wolfe EW (1989) Petrologic constraints on rift-zone processes. Bull Volcanol 52:81–96. doi:10.1007/BF00301548 CrossRefGoogle Scholar
  20. Gee MJR, Masson DG, Watts AB, Mitchell NC (2001) Offshore continuation of volcanic rift zones, El Hierro, Canary Islands. J Volcanol Geotherm Res 105(1–2):107–119. doi:10.1016/S0377-0273(00)00241-9 CrossRefGoogle Scholar
  21. Geldmacher J, Hoernle K, vd Bogaard P, Duggen S, Werner R (2005) New 40Ar/39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: support for the mantle plume hypothesis. Earth Planet Sci Lett 237:85–101. doi:10.1016/j.epsl.2005.04.037 CrossRefGoogle Scholar
  22. Grove TL (1992) Fractionation of MORBGoogle Scholar
  23. Gudmundsson A (1990) Emplacement of dikes, sills, and crustal magma chambers at divergent plate boundaries. Tectonophysics 176:257–275. doi:10.1016/0040-1951(90)90073-H CrossRefGoogle Scholar
  24. Guillou H, Carracedo JC, Pérez Torrado FJ, Badiola ER (1996) K–Ar ages and magnetic stratigraphy of a hotspot-induced, fast grown oceanic island: El Hierro, Canary Islands. J Volcanol Geotherm Res 73:141–155. doi:10.1016/0377-0273(96)00021-2 CrossRefGoogle Scholar
  25. Hansteen TH, Klügel A, Schmincke HU (1998) Multi-stage magma ascent beneath the Canary Islands; evidence from fluid inclusions. Contrib Mineral Petrol 132(1):48–64. doi:10.1007/s004100050404 CrossRefGoogle Scholar
  26. Hibbard MJ (1981) The magma mixing origin of mantled feldspars. Contrib Mineral Petrol 76:158–170. doi:10.1007/BF00371956 CrossRefGoogle Scholar
  27. Hibbard MJ (1991) Textural anatomy of twelve magma mixed granitoid systems. In: Didier J, Barbarin B (eds) Enclaves and granite petrology, vol 13. Elsevier, Amsterdam, pp 431–444Google Scholar
  28. Hoernle K, Schmincke H-U (1993) The role of partial melting in the 15-Ma geochemical evolution of Gran Canaria: a blob model for the Canarian hotspot. J Petrol 34:599–626Google Scholar
  29. Hoernle K, Tilton GR, Schmincke H-U (1991) Sr-Nd–Pb isotope evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth Planet Sci Lett 106:44–63. doi:10.1016/0012-821X(91)90062-M CrossRefGoogle Scholar
  30. Klügel A, Klein F (2006) Complex magma storage and ascent at embryonic submarine volcanoes from Madeira Archipelago. Geology 34:337–340. doi:10.1130/G22077.1 CrossRefGoogle Scholar
  31. Klügel A, Hoernle KA, Schmincke HU, White JDL (2000) The chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic evolution and magma supply dynamics of a rift zone eruption. J Geophys Res 105:5997–6016. doi:10.1029/1999JB900334 CrossRefGoogle Scholar
  32. Klügel A, Hansteen TH, Galipp K (2005) Magma storage and underplating beneath Cumbre Vieja volcano, La Palma (Canary Islands). Earth Planet Sci Lett 236:211–226. doi:10.1016/j.epsl.2005.04.006 CrossRefGoogle Scholar
  33. Landi P, Bertagnini A, Rosi M (1999) Chemical zoning and crystallization mechanisms in the magma chamber of the Pomici di Base plinian eruption of Somma-Vesuvius (Italy). Contrib Mineral Petrol 135(2–3):179–197. doi:10.1007/s004100050505 CrossRefGoogle Scholar
  34. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. Blackwell Scientific Publications, Oxford, 193ppGoogle Scholar
  35. Longpré M-A, Troll VR, Hansteen T (2008) Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain). J Geophys Res 113:11. doi:10.1029/2007JB005422 CrossRefGoogle Scholar
  36. McKenzie D, Bickle MJ (1998) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679Google Scholar
  37. Middlemost EAK (1989) Iron oxidation ratios, norms and the classification of volcanic rocks. Chem Geol 77:19–26. doi:10.1016/0009-2541(89)90011-9 CrossRefGoogle Scholar
  38. Mordick BE, Glazner AF (2006) Clinopyroxene thermobarometry of basalts from the Coso and Big Pine volcanic fields, California. Contrib Mineral Petrol 152:111–124. doi:10.1007/s00410-006-0097-0 CrossRefGoogle Scholar
  39. Münn S, Walter T, Klügel A (2006) Gravitational spreading controls rift zones and flank instability on El Hierro, Canary Islands. Geol Mag 143(3):257–268. doi:10.1017/S0016756806002019 CrossRefGoogle Scholar
  40. Nakagawa M, Wada K, Wood CP (2002) Mixed magmas, mush chambers and eruption triggers: evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu volcano. New Zealand 43(12):2279–2303Google Scholar
  41. Neumann ER, Wulff-Pedersen E, Simonsen SL, Pearson NJ, Martí J, Mitjavila J (1999) Evidence for fractional crystallization of periodically refilled magma chambers in 709 Tenerife, Canary Islands. J Petrol 40:1089–1123. doi:10.1093/petrology/40.7.1089 CrossRefGoogle Scholar
  42. Nixon GT (1988) Petrology of the younger andesites and dacites of Iztaccihuatl Volcano, Mexico; I, Disequilibrium phenocryst assemblages as indicators of magma chamber processes. J Petrol 29(2):213–264Google Scholar
  43. Pallister JS, Hoblitt RP, Crandell DR, Mullineaux LS (1992) Mount St. Helens a decade after the 1980 eruptions: magmatic models, chemical cycles, and a revised hazards assessment. Bull Volcanol 54:126–146. doi:10.1007/BF00278003 CrossRefGoogle Scholar
  44. Pellicer MJ (1979) Geochemical study of volcanism on Hierro, Canary Islands. Estud Geologicos 35:15–29Google Scholar
  45. Putirka K (1997) Magma transport at Hawaii; inferences based on igneous thermobarometry. Geol Boulder 25(1):69–72. doi:10.1130/0091-7613(1997)025<0069:MTAHIB>2.3.CO;2CrossRefGoogle Scholar
  46. Putirka K (1999) Clinopyroxene + liquid equilibria to 100 kbar and 2,450 K. Contrib Mineral Petrol 135(2–3):151–163. doi:10.1007/s004100050503 CrossRefGoogle Scholar
  47. Putirka K, Johnson M, Kinzler R, Longhi R, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Mineral Petrol 123(1):92–108. doi:10.1007/s004100050145 CrossRefGoogle Scholar
  48. Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88:1542–1554Google Scholar
  49. Ranero CR, Torne M, Banda E (1995) Gravity and multichannel seismic reflection constraints on the lithospheric structure of the Canary Swell. Mar Geophys Res 17:519–534. doi:10.1007/BF01204342 CrossRefGoogle Scholar
  50. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289. doi:10.1007/BF00371276 CrossRefGoogle Scholar
  51. Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98:19667–19685. doi:10.1029/93JB01613 Google Scholar
  52. Ryan MP (1988) The mechanics and three-dimensional internal structure of active magmatic systems: Kilauea Volcano, Hawaii. J Geophys Res 93:4213–4248. doi:10.1029/JB093iB05p04213 CrossRefGoogle Scholar
  53. Schmincke H-U (1982) Volcanic and chemical evolution of the Canary Islands. In: von Rad U, Hinz K, Sarntheim M, Seibold E (eds) Geology of the northwest African continental margin. Springer, Berlin, pp 273–306Google Scholar
  54. Schmincke H-U, Sumita M (1998) Volcanic evolution of Gran Canaria reconstructed from apron sediments: synthesis of VI-CAP project drilling. In: Weaver Philip PE, Schmincke Hans U, Firth John V, Duffield W (eds) Proceedings ocean drilling program, Scientific Results, vol 157, pp 443–469Google Scholar
  55. Schwarz S, Klügel A, Wohlgemuth-Ueberwasser C (2004) Melt extraction pathways and stagnation depth beneath the Madeira and Desertas rift zones (NE Atlantic) inferred from barometric studies. Contrib Mineral Petrol 147:228–240. doi:10.1007/s00410-004-0556-4 CrossRefGoogle Scholar
  56. Schwindinger KR, Anderson AT (1989) Synneusis of Kilauea Iki olivines. Contrib Mineral Petrol 103:187–198. doi:10.1007/BF00378504 CrossRefGoogle Scholar
  57. Simonetti A, Bell K (1993) Isotopic disequilibrium in clinopyroxenes, from nephelinite lavas from Napak volcano, eastern Uganda. Geology 21:243–246. doi:10.1130/0091-7613(1993)021<0243:IDICFN>2.3.CO;2CrossRefGoogle Scholar
  58. Sims KWW, Goldstein SJ, Blichert-Toft J, Perfit MR, Kelemen P, Fornari DJ, Michael PJ, Murrell MT, Hart SR, DePaolo DJ, Layne GD, Ball L, Jull M, Bender JF (2002) Chemical and isotopic constrains on the generation and transport of magma beneath the East Pacific Rise. Geochim Cosmochim Acta 66(19):3481–3504. doi:10.1016/S0016-7037(02)00909-2 CrossRefGoogle Scholar
  59. Sleep NH (1990) Hotspots and mantle plumes: some phenomenology. J Geophys Res 95:6715–6736. doi:10.1029/JB095iB05p06715 CrossRefGoogle Scholar
  60. Stewart ML, Fowler AD (2001) The nature and occurrence of discrete zoning in plagioclase from recently erupted andesitic volcanic rocks, Montserrat. J Volcanol Geotherm Res 106(3–4):243–253. doi:10.1016/S0377-0273(00)00240-7 CrossRefGoogle Scholar
  61. ten Brink US, Brocher TM (1987) Multichannel seismic evidence for a subcrustal intrusive complex under Oahu and a model for Hawaiian volcanism. J Geophys Res 92(B13):13687–13707. doi:10.1029/JB092iB13p13687 CrossRefGoogle Scholar
  62. Tilling RI, Dvorak JJ (1993) Anatomy of a basaltic volcano. Nature 363:125–133. doi:10.1038/363125a0 CrossRefGoogle Scholar
  63. Tomiya A, Takahashi E (2005) Evolution of the Magma Chamber beneath Usu Volcano since 1663: a natural laboratory for observing changing phenocryst compositions and textures. J Petrol 46:2395–2426. doi:10.1093/petrology/egi057 CrossRefGoogle Scholar
  64. Troll VR, Schmincke H-U (2002) Magma mixing and crustal recycling recorded in ternary feldspar from compositionally zoned peralkaline ignimbrite ‘A’, Gran Canaria, Canary Islands. J Petrol 43(2):243–270. doi:10.1093/petrology/43.2.243 CrossRefGoogle Scholar
  65. Walker GPL (1992) Coherent intrusion complexes in large basaltic volcanoes––a new structural model. J Geophys Res 50:41–54Google Scholar
  66. Walker GPL (1999) Volcanic rift zones and their intrusion swarms. J Geophys Res 94:21–34Google Scholar
  67. Wright TM, Fiske RS (1972) Origin of the Differentiated and Hybrid Lavas of Kilauea Volcano, Hawaii. J Petrol 12:1–65Google Scholar
  68. Yang HJ, Frey FA, Clague DA, Garcia MO (1999) Mineral chemistry of submarine lavas from Hilo Ridge, Hawaii; implications for magmatic processes within Hawaiian rift zones. Contrib Mineral Petrol 135(4):355–372. doi:10.1007/s004100050517 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Nicole A. Stroncik
    • 1
  • Andreas Klügel
    • 2
  • Thor H. Hansteen
    • 3
  1. 1.GeoForschungsZentrum PotsdamPotsdamGermany
  2. 2.Fachbereich GeowissenschaftenUniversität BremenBremenGermany
  3. 3.IFM-GEOMAR, Leibniz-Institut für MeereswissenschaftenKielGermany

Personalised recommendations