Igneous garnet and amphibole fractionation in the roots of island arcs: experimental constraints on andesitic liquids

  • Raquel Alonso-Perez
  • Othmar MüntenerEmail author
  • Peter Ulmer
Original Paper


To evaluate the role of garnet and amphibole fractionation at conditions relevant for the crystallization of magmas in the roots of island arcs, a series of experiments were performed on a synthetic andesite at conditions ranging from 0.8 to 1.2 GPa, 800–1,000°C and variable H2O contents. At water undersaturated conditions and fO2 established around QFM, garnet has a wide stability field. At 1.2 GPa garnet + amphibole are the high-temperature liquidus phases followed by plagioclase at lower temperature. Clinopyroxene reaches its maximal stability at H2O-contents ≤9 wt% at 950°C and is replaced by amphibole at lower temperature. The slopes of the plagioclase-in boundaries are moderately negative in \( {\text{T{\text{-}}X}}_{{{\text{H}}_{2} {\text{O}}}} \) space. At 0.8 GPa, garnet is stable at magmatic H2O contents exceeding 8 wt% and is replaced by spinel at decreasing dissolved H2O. The liquids formed by crystallization evolve through continuous silica increase from andesite to dacite and rhyolite for the 1.2 GPa series, but show substantial enrichment in FeO/MgO for the 0.8 GPa series related to the contrasting roles of garnet and amphibole in fractionating Fe–Mg in derivative liquids. Our experiments indicate that the stability of igneous garnet increases with increasing dissolved H2O in silicate liquids and is thus likely to affect trace element compositions of H2O-rich derivative arc volcanic rocks by fractionation. Garnet-controlled trace element ratios cannot be used as a proxy for ‘slab melting’, or dehydration melting in the deep arc. Garnet fractionation, either in the deep crust via formation of garnet gabbros, or in the upper mantle via formation of garnet pyroxenites remains an important alternative, despite the rare occurrence of magmatic garnet in volcanic rocks.


Experimental petrology Hydrous andesite liquids High-pressure crystallization Amphibole Garnet fractionation 



We are grateful to S. Pilet for measuring CO2 and H2O in the starting material by FT-IR at Caltech. We thank Bruno Scaillet and Alan Thompson for comments and M.J. Krawczynski who provided a helpful review that improved the paper. Insightful and constructive comments by T.W. Sisson forced us to think harder about CO2 and fO2 and substantially improved the overall content of the paper. This research was supported by the Swiss NSF (Grants nr. 2000-61894.00/1).


  1. Allen JC, Boettcher AL (1978) Amphiboles in andesite and basalt: II. Stability as a function of P–T-fH2O-fO2. Am Mineral 63:1074–1087Google Scholar
  2. Allen JC, Boettcher AL (1983) The stability of amphibole in andesite and basalt at high pressures. Am Mineral 68:307–314Google Scholar
  3. Allen JC, Boettcher AL, Marland G (1975) Amphiboles in andesite and basalt: I. Stability as a function of P–T-fO2. Am Min 60:1069–1085Google Scholar
  4. Alonso-Perez R (2006) The role of garnet in the evolution of hydrous, calc-alkaline magmas: an experimental study at 0.8–1.5 GPa. PhD thesis, ETH Zurich, p 174Google Scholar
  5. Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146. doi: 10.1038/362144a0 CrossRefGoogle Scholar
  6. Baker DR, Eggler DH (1987) Compositions of anhydrous and hydrous melts coexisting with plagioclase, augite, and olivine or low-Ca pyroxene from 1 atm to 8 kbar: application to the Aleutian volcanic center of Atka. Am Min 72:12–28Google Scholar
  7. Bartels KS, Kinzler RJ, Grove TL (1991) High pressure phase relations of primitive high-alumina basalts from Medicine Lake volcano, northern California. Contrib Mineral Petrol 108:253–270. doi: 10.1007/BF00285935 CrossRefGoogle Scholar
  8. Blundy JD, Sparks RSJ (1992) Petrogenesis of mafic inclusions in granitoid magmas of the Adamello massif, Italy. J Petrol 33:1039–1104Google Scholar
  9. Blundy JD, Wood BJ (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397CrossRefGoogle Scholar
  10. Bowen NL (1928) The evolution of igneous rocks. Princeton University Press, NJGoogle Scholar
  11. Burg JP, Bodinier JL, Chaudhry S, Hussain S, Dawood H (1998) Infra-arc mantle-crust transition and intra-arc mantle diapirs in the Kohistan complex (Pakistani Himalaya): petro-structural evidence. Terra Nova 10:74–80. doi: 10.1046/j.1365-3121.1998.00170.x CrossRefGoogle Scholar
  12. Cawthorn RG, Brown PA (1976) A model for the formation and crystallization of corundum-normative calcalkaline magmas through amphibole fractionation. J Geol 84:467–476CrossRefGoogle Scholar
  13. Cawthorn RG, O’Hara MJ (1976) Amphibole fractionation in calc-alkaline magma genesis. Am J Sci 276:309–329Google Scholar
  14. Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28(6):1111–1138Google Scholar
  15. Coleman RG, Lee DE, Beatty LB, Brannock WW (1965) Eclogites and eclogites–their differences and similarities. Geol Soc Am Bull 76:483–508. doi: 10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2 CrossRefGoogle Scholar
  16. Conrad WK, Nicholls IA, Wall VJ (1988) Water-saturated and -undersaturated melting of metaluminous and peraluminous crustal compositions at 10 kb: evidence for the origin of silicic magmas in the Taupo Volcanic Zone, New Zealand, and other occurrences. J Petrol 29:765–803Google Scholar
  17. Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole ‘sponge’ in the arc crust. Geology 35:787–790. doi: 10.1130/G23637A.1 CrossRefGoogle Scholar
  18. Day RA, Green TH, Smith IEM (1992) The origin and significance of garnet phenocrysts and garnet-bearing xenoliths in miocene calc-alkaline volcanics from Northland, New Zealand. J Petrol 33:125–161Google Scholar
  19. DeBari SM, Coleman RG (1989) Examination of the deep levels of an island arc: Evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J Geophys Res 94:4373–4391. doi: 10.1029/JB094iB04p04373 CrossRefGoogle Scholar
  20. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665. doi: 10.1038/347662a0 CrossRefGoogle Scholar
  21. Di Muro A, Villemant B, Montagnac G, Scaillet B, Reynard B (2006) Quantification of water content and speciation in natural silicic glasses (phonolite, dacite, rhyolite) by confocal micro-Raman spectrometry. Geochim Cosmochim Acta 70:2868–2884. doi: 10.1016/j.gca.2006.02.016 CrossRefGoogle Scholar
  22. Dixon JE, Pan V (1995) Determination of the molar absorptivity of dissolved carbonate in basanitic glass. Am Min 80:1339–1342Google Scholar
  23. Dixon JE, Stolper EM, Holloway JR (1995) An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids 1. Calibration and solubility models. J Petrol 36:1607–1631Google Scholar
  24. Draper DS, Johnston AD (1992) Anhydrous PT phase relations of an aleutian high-MgO basalt: an investigation of the role of olivine-liquid reaction in the generation of high-alumina basalts. Contrib Mineral Petrol 112:501–519. doi: 10.1007/BF00310781 CrossRefGoogle Scholar
  25. Ducea MN, Saleeby JB (1996) Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: evidence form xenolith thermobarometry. J Geophys Res 101(B4):8229–8244. doi: 10.1029/95JB03452 CrossRefGoogle Scholar
  26. Ducea MN, Saleeby JB (1998) The age and origin of a thick mafic-ultramafic keel from beneath the Sierra Nevada batholith. Contrib Mineral Petrol 133:169–185. doi: 10.1007/s004100050445 CrossRefGoogle Scholar
  27. Evans BW, Vance JA (1987) Epidote phenocrysts in dacitic dikes, Boulder county, Colorado. Contrib Mineral Petrol 96:178–185. doi: 10.1007/BF00375231 CrossRefGoogle Scholar
  28. Fitton JG (1972) The genetic significance of almandine-pyrope phenocrysts in the calc-alkaline Borrowdale volcanic group, Northern England. Contrib Mineral Petrol 36:231–248. doi: 10.1007/BF00371434 CrossRefGoogle Scholar
  29. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346. doi: 10.1007/s004100050396 CrossRefGoogle Scholar
  30. Garrido CJ, Bodinier J-L, Burg J-P, Zeilinger G, Hussain SS, Dawood H, Chaudry N, Gervilla F (2006) Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan Paleo-arc complex (Northern Pakistan): Implications for intra-crustal differentiation of island arcs and generation of continental crust. J Petrol 47:1872–1914. doi: 10.1093/petrology/egl030 CrossRefGoogle Scholar
  31. Gill JB (1981) Orogenic Andesites and plate tectonics. Springer, Berlin, p 390Google Scholar
  32. Green TH (1972) Crystallization of calc-alkaline andesite under controlled high pressure hydrous conditions. Contrib Mineral Petrol 34:150–166. doi: 10.1007/BF00373770 CrossRefGoogle Scholar
  33. Green TH (1992) Experimental phase equilibrium studies of garnet-bearing I-type volcanics and high-level intrusives from Northland, New Zealand. Trans R Soc Edinb Earth Sci 83:429–438Google Scholar
  34. Green TH, Ringwood AE (1968a) Genesis of the calc-alkaline igneous rock suite. Contrib Mineral Petrol 18:105–162. doi: 10.1007/BF00371806 CrossRefGoogle Scholar
  35. Green TH, Ringwood AE (1968b) Origin of garnet phenocrysts in calc-alkaline rocks. Contrib Mineral Petrol 18:163–174. doi: 10.1007/BF00371807 CrossRefGoogle Scholar
  36. Greene AR, DeBari SM, Kelemen PB, Blusztain J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J Petrol 47:1051–1093. doi: 10.1093/petrology/egl002 CrossRefGoogle Scholar
  37. Grove TL, Kinzler RJ, Bryan WB (1992) Fractionation of mid-ocean ridge basalt (MORB). In: Phipps Morgan J, Blackman DK, Sinton JM (eds) Mantle flow and melt generation at mid-ocean ridges, vol 71. American Geophysical Union, Washington, DC, pp 281–310Google Scholar
  38. Hall LJ, Brodie J, Wood BJ, Carroll MR (2004) Iron and water losses from hydrous basalts contained in Au80Pd20 capsules at high pressure and temperature. Min Mag (Lond) 68:75–81. doi: 10.1180/0026461046810172 CrossRefGoogle Scholar
  39. Harangi SZ, Downes H, Kosa L, Szabo C, Thirlwall MF, Mason PRD, Mattey DP (2001) Almandine Garnet in calc-alkaline volcanic rocks of the Northern Pannonian basin (Eastern Central Europe): Geochemistry, petrogenesis and geodynamic implications. J Petrol 42:1813–1843. doi: 10.1093/petrology/42.10.1813 CrossRefGoogle Scholar
  40. Helz RT (1982) Phase relations and compositions of amphiboles produced in studies of the melting behavior of rocks. In: Ribbe P (ed) Amphiboles; petrology and experimental phase relations. Mineralogical Society of America, Washington, DC, pp 279–353Google Scholar
  41. Huang W-L, Wyllie PJ (1986) Phase relationships of gabbro-tonalite-granite-water at 15 kbar with applications to differentiation and anatexis. Am Min 71:301–316Google Scholar
  42. Jan MQ, Howie RA (1981) The mineralogy and geochemistry of the metamorphosed basic and ultrabasic rocks of the Jijal complex, Kohistan, NW Pakistan. J Petrol 22:85–126Google Scholar
  43. Kägi R (2000) The liquid line of descent of hydrous, primary calc-alkaline magmas under elevated pressure. An experimental approach. PhD thesis, ETH Zürich, p 100Google Scholar
  44. Kägi R, Müntener O, Ulmer P, Ottolini L (2005) Piston cylinder experiments on H2O undersaturated Fe-bearing systems: an experimental setup approaching fO2 conditions of natural calc-alkaline magmas. Am Min 90:708–717. doi: 10.2138/am.2005.1663 CrossRefGoogle Scholar
  45. Kay S, Mahlburg KS, Kay RW (1985) Aleutian tholeiitic and calc-alkaline magma series I: the mafic phenocrysts. Contrib Mineral Petrol 90:276–290. doi: 10.1007/BF00378268 Google Scholar
  46. Kelemen PB, Hanghøj K, Greene AR (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust. Elsevier, New York, pp 593–659Google Scholar
  47. Kinzler RJ, Grove TL (1992) Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. J Geophys Res 97:6885–6906. doi: 10.1029/91JB02840 CrossRefGoogle Scholar
  48. Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92. doi: 10.1007/BF00307328 CrossRefGoogle Scholar
  49. Kushiro I (1987) A petrological model of the mantle wedge and lower crust in the Japanese island arcs. In: Mysen B (ed): Magmatic processes, physicochemical principles. Geochem Soc Spec Publ 1:165–181Google Scholar
  50. Le Bas MJ, Lemaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification diagram of volcanic rocks based on the total alkali silica diagram. J Petrol 27(3):745–750Google Scholar
  51. Leake BE (1978) Nomenclature of amphiboles. Am Min 63:1023–1052Google Scholar
  52. Mercier M, Di Muro A, Giordano D, Métrich N, Lesne P, Pichavant M, Scaillet B, Clocchiatti R, Montagnac G (2008) Influence of glass polymerization and oxidation on Micro-Raman water analysis in alumino-silicate glasses. Geochim Cosmochim Acta (in press)Google Scholar
  53. Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355Google Scholar
  54. Müntener O, Ulmer P (2006) Experimentally derived high-pressure cumulates from hydrous arc magmas and consequences for the seismic velocity structure of island arc crust. Geophys Res Lett 31:L21308. doi: 10.1029/2006GL027629 CrossRefGoogle Scholar
  55. Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Mineral Petrol 141:643–658Google Scholar
  56. Mysen BO (1988) Structure and properties of silicate melts. Elsevier, AmsterdamGoogle Scholar
  57. Osborn EF (1959) Role of oxygen pressure in the crystallization and differentiation of basaltic magma. Am J Sci 257:609–647Google Scholar
  58. Newman S, Stolper E, Stern R (2000) H2O and CO2 in magmas from the Mariana arc and back arc systems. Geochem Geophys Geosystems 1. doi: 10.1029/1999GC000027
  59. Otten MT (1984) The origin of brown hornblende in the Artfjället gabbro and dolerites. Contrib Mineral Petrol 86(2):189–199. doi: 10.1007/BF00381846 CrossRefGoogle Scholar
  60. Pilet S, Baker M, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916–919. doi: 10.1126/science.1156563 CrossRefGoogle Scholar
  61. Ratajeski K, Sisson TW (1999) Loss of iron to gold capsules in rock-melting experiments. Am Min 84:1521–1527Google Scholar
  62. Ringuette L, Martignole J, Windley BF (1999) Magmatic crystallization, isobaric cooling, and decompression of the garnet-bearing assemblages of the Jijal sequence (Kohistan terrane, western Himalayas). Geology 27:139–142. doi:10.1130/0091-7613(1999)027<0139:MCICAD>2.3.CO;2 CrossRefGoogle Scholar
  63. Rudnick RL (1995) Making continental crust. Nature 378:571–577. doi: 10.1038/378571a0 CrossRefGoogle Scholar
  64. Schroter FC, Stevenson JA, Daczko NR, Clarke GL, Pearson NJ, Klepeis KA (2004) Trace element partitioning during high-P partial melting and melt-rock interaction; an example from northern Fiordland, New Zealand. J Metamorph Geol 22(5):443–457. doi: 10.1111/j.1525-1314.2004.00525.x CrossRefGoogle Scholar
  65. Sisson TW, Grove TL (1993a) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166. doi: 10.1007/BF00283225 CrossRefGoogle Scholar
  66. Sisson TW, Grove TL (1993b) Temperatures and H2O contents of low MgO high-alumina basalts. Contrib Mineral Petrol 113:167–184. doi: 10.1007/BF00283226 CrossRefGoogle Scholar
  67. Sisson TW, Ratajeski K, Hankins WB, Glazner AF (2005) Voluminous granitic magmas from common basaltic sources. Contrib Mineral Petrol 148:635–661. doi: 10.1007/s00410-004-0632-9 CrossRefGoogle Scholar
  68. Stern CR, Huang W-L, Wyllie PJ (1975) Basalt-andesite-rhyolite-H2O crystallization intervals with excess H2O and H2O-undersaturated liquidus surfaces to 35 kilobars, with implications for magma genesis. Earth Planet Sci Lett 28:189–196. doi: 10.1016/0012-821X(75)90226-5 CrossRefGoogle Scholar
  69. Taylor SR (1967) The origin and growth of continents. Tectonophysics 4:17–34. doi: 10.1016/0040-1951(67)90056-X CrossRefGoogle Scholar
  70. Tiepolo M, Vannucci R, Oberti R, Foley S, Bottazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite; crystal-chemical constraints and implications for natural systems. Earth Planet Sci Lett 176:185–201. doi: 10.1016/S0012-821X(00)00004-2 CrossRefGoogle Scholar
  71. Ulmer P (1986) Basische und ultrabasische Gesteine des Adamello (Provinzen Brescia und Trento, Norditalien). PhD thesis Nr. 8105. ETH ZürichGoogle Scholar
  72. Ulmer P (1989a) High pressure phase equilibria of a calc-alkaline picro-basalt: Implications for the genesis of calc-alkaline magmas. Carnegie Inst Wash Yb 88:28–35Google Scholar
  73. Ulmer P (1989b) Partitioning of High Field Strength Elements among olivine, pyroxenes, garnet and calc-alkaline picrobasalts: experimental results and an application. Carnegie Inst Wash Yb 88:42–47Google Scholar
  74. Ulmer P (2007) Differentiation of mantle-derived calc-alkaline magmas at mid to lower crustal levels: experimental and petrologic constraints. Minerva 76:309–325Google Scholar
  75. Ulmer P, Callegari E, Sonderegger UC (1983) Genesis of the mafic and ultramafic rocks and their genetical relations to the tonalitic-trondhjemitic granitoids of the southern part of the Ademello Batholith, (Northern Italy). Mem Soc Geol Ital 26:171–222Google Scholar
  76. Villiger S, Ulmer P, Müntener O, Thompson AB (2004) The liquid line of descent of anhydrous, mantle-derived, tholeiitic liquids by fractional and equilibrium crystallization—an experimental study at 1.0 GPa. J Petrol 45:2369–2388. doi: 10.1093/petrology/egh042 CrossRefGoogle Scholar
  77. Villiger S, Ulmer P, Müntener O (2007) Equilibrium and fractional crystallization experiments at 0.7 GPa: the effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J Petrol 48:159–184. doi: 10.1093/petrology/egl058 CrossRefGoogle Scholar
  78. Weber MBI, Tarney J, Kempton PD, Kent RW (2002) Crustal make-up of the Northern Andes; evidence based on deep crustal xenolith suites, Mercaderes, SW Colombia. In: Wörner G, Jaillard E (eds) Andean geodynamics. Elsevier, AmsterdamGoogle Scholar
  79. Wilke M, Behrens H (1999) The dependence of the partitioning of iron and europium between plagioclase and hydrous tonalitic melt on oxygen fugacity. Contrib Mineral Petrol 137:102–114. doi: 10.1007/s004100050585 CrossRefGoogle Scholar
  80. Yoder HS (1968) Albite-anorthite-quartz-water at 5 kbar. Carnegie Inst Wash Yb 66:477–478Google Scholar
  81. Yoshino T, Okudaira T (2004) Crustal growth by magmatic accretion constrained by metamorphic p-T paths and thermal models of the Kohistan arc, NW Himalayas. J Petrol 45:2287–2302. doi: 10.1093/petrology/egh056 CrossRefGoogle Scholar
  82. Zajacz Z, Halter W, Malfait W, Bachmann O, Bodnar RJ, Hirschmann MM, Mandeville CW, Morizet Y, Müntener O, Ulmer P, Webster J (2005) A composition-independent quantitative determination of the water content in silicate glasses and silicate melt inclusions by confocal Raman spectroscopy. Contrib Mineral Petrol 150:631–642. doi: 10.1007/s00410-005-0040-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Raquel Alonso-Perez
    • 1
  • Othmar Müntener
    • 2
    Email author
  • Peter Ulmer
    • 1
  1. 1.Institute of Mineralogy and Petrology, ETHZurichSwitzerland
  2. 2.Institute of Mineralogy and GeochemistryUniversity of LausanneLausanneSwitzerland

Personalised recommendations