Advertisement

Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism

  • Steven CreightonEmail author
  • Thomas Stachel
  • Sergei Matveev
  • Heidi Höfer
  • Catherine McCammon
  • Robert W. Luth
Original Paper

Abstract

The oxidation state, reflected in the oxygen fugacity (fO2), of the subcratonic lithospheric mantle is laterally and vertically heterogeneous. In the garnet stability field, the Kaapvaal lithospheric mantle becomes progressively more reducing with increasing depth from Δlog fO2 FMQ-2 at 110 km to FMQ-4 at 210 km. Oxidation accompanying metasomatism has obscured this crystal-chemical controlled depth-fO2 trend in the mantle beneath Kimberley, South Africa. Chondrite normalized REE patterns for garnets, preserve evidence of a range in metasomatic enrichment from mild metasomatism in harzburgites to extensive metasomatism by LREE-enriched fluids and melts with fairly unfractionated LREE/HREE ratios in phlogopite-bearing lherzolites. The metasomatized xenoliths record redox conditions extending up to Δlog fO2 = FMQ, sufficiently oxidized that magnesite would be the stable host of carbon in the most metasomatized samples. The most oxidized lherzolites, those in or near the carbonate stability field, have the greatest modal abundance of phlogopite and clinopyroxene. Clinopyroxene is modally less abundant or absent in the most reduced peridotite samples. The infiltration of metasomatic fluids/melts into diamondiferous lithospheric mantle beneath the Kaapvaal craton converted reduced, anhydrous harzburgite into variably oxidized phlogopite-bearing lherzolite. Locally, portions of the lithospheric mantle were metasomatized and oxidized to an extent that conversion of diamond into carbonate should have occurred.

Keywords

Mantle oxidation state Mantle metasomatism MARID Kaapvaal craton Kimberley kimberlite 

Notes

Acknowledgments

The authors wish to thank Antonio Simonetti and GuangCheng Chen for their assistance with LA-ICPMS analyses. Financial support for this project was provided by NSERC in the way of a Postgraduate Doctoral Scholarship to S·C and a Discovery grant to T.S. Dr. Jock Robey and De Beers Consolidated Mines are gratefully acknowledged for their support in collecting samples and shipping xenoliths to Canada. Diavik Diamond Mines Inc. provided support for analytical costs.

Supplementary material

410_2008_348_MOESM1_ESM.xls (32 kb)
Major element composition of olivine, orthopyroxene and clinopyroxene from our xenolith suite (in wt%) (XLS 32 kb)

References

  1. Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114:331–348. doi: 10.1007/BF01046536 CrossRefGoogle Scholar
  2. Boyd FR (1987) High- and low-temperature garnet peridotite xenoliths and their possible relation to the lithosphere–asthenosphere boundary beneath southern Africa. In: Nixon PH (ed) Mantle xenoliths. Wiley, Chichester, New York, pp 403–412Google Scholar
  3. Brey GP, Köhler T (1990) Geothermobarmetry in four-phase lherzolites II. New thermometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378Google Scholar
  4. Bryndzia LT, Wood BJ (1990) Oxygen thermobarometry of abyssal spinel peridotites: the redox state and C–O–H volatile composition of the Earth’s sub-oceanic upper mantle. Am J Sci 290:1093–1116Google Scholar
  5. Canil D, O’Neill HSC (1996) Distribution of ferric iron in some upper-mantle assemblages. J Petrol 37:609–635. doi: 10.1093/petrology/37.3.609 CrossRefGoogle Scholar
  6. Dawson J, Smith J (1977) The MARID (mica–amphibole–rutile–ilmenite–diopside) suite of xenoliths in kimberlite. Geochim Cosmochim Acta 41:309–310. doi: 10.1016/0016-7037(77)90239-3 CrossRefGoogle Scholar
  7. Eggler DH, Baker DR (1982) Reduced volatiles in the system C–O–H: implications to mantle melting, fluid formation, and diamond genesis. In: Akimoto S, Manghnani MH (eds) High pressure research in geophysics. Center for Academic Publications Japan, Tokyo, pp 237–250Google Scholar
  8. French B (1966) Some geological implications of equilibrium between graphite and a CHO gas phase at high temperatures and pressures. Rev Geophys 4:223–253. doi: 10.1029/RG004i002p00223 CrossRefGoogle Scholar
  9. Gregoire M, Bell DR, Le Roex AP (2003) Garnet Lherzolites from the Kaapvaal Craton (South Africa): trace element evidence for a metasomatic history. J Petrol 44:629–657. doi: 10.1093/petrology/44.4.629 CrossRefGoogle Scholar
  10. Griffin W, Ryan C (1995) Trace elements in indicator minerals: area selection and target evaluation in diamond exploration. J Geochem Explor 53:311–337. doi: 10.1016/0375-6742(94)00015-4 CrossRefGoogle Scholar
  11. Griffin WL, Shee SR, Ryan CG, Win TT, Wyatt BA (1999) Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberly, South Africa. Contrib Mineral Petrol 134:232–250. doi: 10.1007/s004100050481 CrossRefGoogle Scholar
  12. Griffin WL, O’Reilly SY, Natapov LM, Ryan CG (2003) The evolution of lithospheric mantle beneath the Kalahari Craton and its margins. Lithos 71:215–241. doi: 10.1016/j.lithos.2003.07.006 CrossRefGoogle Scholar
  13. Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857. doi: 10.1016/j.lithos.2004.04.012 CrossRefGoogle Scholar
  14. Gudmundsson G, Wood BJ (1995) Experimental test of garnet peridotite oxygen barometry. Contrib Mineral Petrol 119:56–67. doi: 10.1007/BF00310717 CrossRefGoogle Scholar
  15. Gurney JJ (1984) A correlation between garnets and diamonds in kimberlites. In: Glover JE, Harris PG (eds) Kimberlite occurrence and origins: a basis for conceptual models in exploration, vol Publication 8. Geology Department and University Extension, University of Western Australia, pp 143–166Google Scholar
  16. Haggerty SE (1990) Redox state of the continental lithosphere. In: Menzies MA (ed) Continental mantle. Clarendon Press/Oxford University Press, Oxford, EnglandGoogle Scholar
  17. Haggerty SE, Tompkins LA (1983) Redox state of Earth’s upper mantle from kimberlitic ilmenites. Nature 303:295–300CrossRefGoogle Scholar
  18. Harley SL (1984) An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib Mineral Petrol 86:359–373. doi: 10.1007/BF01187140 CrossRefGoogle Scholar
  19. Harte B (1977) Rock nomenclature with particular relation to deformation and recrystallisation textures in olivine-bearing xenoliths. J Geol 85:279–288CrossRefGoogle Scholar
  20. Höfer HE (2002) Quantification of Fe2+/Fe3+ by electron microprobe analysis —new developments. Hyper Inter 144/145:239–248. doi: 10.1023/A:1025461907725 CrossRefGoogle Scholar
  21. Höfer HE, Brey GP (2007) The iron oxidation state of garnet by electron microprobe: Its determination with the flank method combined with major-element analysis. Am Mineral 92:873–885. doi: 10.2138/am.2007.2390 CrossRefGoogle Scholar
  22. Höfer HE, Brey GP, Schulz-Dobrick B, Oberhänsli R (1994) The determination of the oxidation state of iron by the electron microprobe. Eur J Mineral 6:407–418Google Scholar
  23. Höfer HE, Brey GP, Woodland AB (2003) Iron oxidation state of mantle minerals determined from L emission spectra by the electron microprobe. In: 8th International Kimberlite Conference Long Abstract, 4 ppGoogle Scholar
  24. Huizenga J-M (2001) Thermodynamic modelling of C–O–H fluids. Lithos 55:101–114. doi: 10.1016/S0024-4937(00)00040-2 CrossRefGoogle Scholar
  25. James DE, Fouch MJ, VanDecar JC, van der Lee S, Kaapvaal Seismic Group (2001) Tectospheric structure beneath southern Africa. Geophys Res Lett 28(13):2485–2488Google Scholar
  26. Kennedy CS, Kennedy GC (1976) The equilibrium boundary between graphite and diamond. J Geophys Res 81:2467–2470. doi: 10.1029/JB081i014p02467 CrossRefGoogle Scholar
  27. Konzett J, Sweeney RJ, Thompson AB, Ulmer P (1997) Potassium amphibole stability in the upper mantle: an experimental study in a peralkaline KNCMASH System to 8.5 GPa. J Petrol 38:537–568. doi: 10.1093/petrology/38.5.537 CrossRefGoogle Scholar
  28. Konzett J, Armstrong RA, Sweeney RJ, Compston W (1998) The timing of MARID metasomatism in the Kaapvaal mantle: An ion probe study of zircons from MARID xenoliths. Earth Planet Sci Lett 160:133–145. doi: 10.1016/S0012-821X(98)00073-9 CrossRefGoogle Scholar
  29. Luth RW (1993) Diamonds, eclogites and the oxidation state of the Earth’s mantle. Science 261:66–68. doi: 10.1126/science.261.5117.66 CrossRefGoogle Scholar
  30. Luth RW, Virgo D, Boyd FR, Wood BJ (1990) Ferric iron in mantle-derived garnets: implications for thermobarometry and for the oxidation state of the mantle. Contrib Mineral Petrol 104:56–72. doi: 10.1007/BF00310646 CrossRefGoogle Scholar
  31. Matveev S, Ballhaus C, Fricke K, Truckenbrodt J, Ziegenben D (1997) Volatiles in the Earth’s mantle: I. Synthesis of CHO fluids at 1,273°K and 2.4 GPa. Geochim Cosmochim Acta 61:3081–3088. doi: 10.1016/S0016-7037(97)00142-7 CrossRefGoogle Scholar
  32. McCammon CA (1994) A Mössbauer milliprobe: Practical considerations. Hyper Inter 92:1235–1239. doi: 10.1007/BF02065761 CrossRefGoogle Scholar
  33. McCammon CA, Kopylova MG (2004) A redox profile of the Slave mantle and oxygen fugacity control in the cratonic mantle. Contrib Mineral Petrol 148:55–68. doi: 10.1007/s00410-004-0583-1 CrossRefGoogle Scholar
  34. McCammon CA, Griffin WL, Shee SR, O’Neill HSC (2001) Oxidation during metasomatism in ultramafic xenoliths from the Wesselton kimberlite, South Africa: implications for the survival of diamond. Contrib Mineral Petrol 141:287–296Google Scholar
  35. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223–253. doi: 10.1016/0009-2541(94)00140-4 CrossRefGoogle Scholar
  36. McGuire A, Dyar M, Nielson J (1991) Metasomatic oxidation of upper mantle periodotite. Contrib Mineral Petrol 109:252–264. doi: 10.1007/BF00306483 CrossRefGoogle Scholar
  37. O’Neill HSC (1980) An experimental study of Fe–Mg partitioning between garnet and olivine and its calibration as a geothermometer: corrections. Contrib Mineral Petrol 72:337. doi: 10.1007/BF00376154 CrossRefGoogle Scholar
  38. O’Neill HSC, Wood BJ (1979) An experimental study of Fe–Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib Mineral Petrol 70:59–70. doi: 10.1007/BF00371872 CrossRefGoogle Scholar
  39. Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms, and lithospheric thickness. Tectonophysics 38:279–296. doi: 10.1016/0040-1951(77)90215-3 CrossRefGoogle Scholar
  40. Ramsay RR, Tompkins LA (1994) The geology, heavy mineral concentrate mineralogy, and diamond prospectivity of the Boa Eperancaça and Cana Verde pipes, Corrego D’anta, Minas Gerais, Brazil. In: Meyers HOA, Leonardos OH (eds) Proceedings of the 5th International Kimberlite Conference, vol 1. Companhia de Pesquisa de Recursos Minerais, pp 329–345Google Scholar
  41. Stachel T, Harris JW, Tappert R, Brey GP (2003) Peridotitic diamonds from the Slave and the Kaapvaal cratons—similarities and differences based on a preliminary data set. Lithos 71:489–503. doi: 10.1016/S0024-4937(03)00127-0 CrossRefGoogle Scholar
  42. Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–19. doi: 10.1016/j.lithos.2004.03.027 CrossRefGoogle Scholar
  43. Sweeney RJ, Thompson AB, Ulmer P (1993) Phase relations of a natural MARID composition and implications for MARID genesis, lithospheric melting and mantle metasomatism. Contrib Mineral Petrol 115:225–241. doi: 10.1007/BF00321222 CrossRefGoogle Scholar
  44. Taylor WR, Green DH (1989) The role of reduced C–O–H fluids in mantle partial melting. In: Ross J (ed) 4th International Kimberlite Conference, vol 1. Blackwell, Carlton, Perth, Australia, pp 592–602Google Scholar
  45. de Wit MJ, Roering C, Hart RJ, Armstrong RA, de Ronde CEJ, Green RWE, Tredoux M, Peberdy E, Hart RA (1992) Formation of an Archean continent. Nature 357:553–562. doi: 10.1038/357553a0 CrossRefGoogle Scholar
  46. Wood BJ, Bryndzia LT, Johnson KE (1990) Mantle oxidation state and its relationship to tectonic environment and fluid speciation. Science 248:337–345. doi: 10.1126/science.248.4953.337 CrossRefGoogle Scholar
  47. Woodland AB, Koch M (2003) Variation in oxygen fugacity with depth in the upper mantle beneath the Kaapvaal craton, southern Africa. Earth Planet Sci Lett 214:295–310. doi: 10.1016/S0012-821X(03)00379-0 CrossRefGoogle Scholar
  48. Woodland AB, O’Neill HSC (1993) Synthesis and stability of Fe3 2+Fe2 3+Si3O12 garnet and phase relations with Fe3Al2Si3O12 Fe3 2+Fe2 3+Si3O12 solutions. Am Miner 78:1002–1015Google Scholar
  49. Woodland AB, Peltonen P (1999) Ferric iron contents of garnet and clinopyroxene and estimated oxygen fugacities of peridotite xenoliths from the Eastern Finland Kimberlite Province. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th International Kimberlite Conference, vol 2. Red Roof Design, Cape Town, South Africa, pp 904–911Google Scholar
  50. Woodland A, Kornprobst J, Tabit A (2006) Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle. Lithos 89:222–241. doi: 10.1016/j.lithos.2005.12.014 CrossRefGoogle Scholar
  51. Wyllie PJ, Huang W-L (1976) Carbonation and melting reactions in the system CaO–MgO–SiO2–CO2at mantle pressures with geophysical and petrological applications. Contrib Mineral Petrol 54:79–107. doi: 10.1007/BF00372117 CrossRefGoogle Scholar
  52. Zhao D, Essene EJ, Zhang Y (1999) An oxygen barometer for rutile–ilmenite assemblages: oxidation state of metasomatic agents in the mantle. Earth Planet Sci Lett 166:127–137. doi: 10.1016/S0012-821X(98)00281-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Steven Creighton
    • 1
    Email author
  • Thomas Stachel
    • 1
  • Sergei Matveev
    • 1
  • Heidi Höfer
    • 2
  • Catherine McCammon
    • 3
  • Robert W. Luth
    • 1
  1. 1.Department of Earth and Atmospheric SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Institut für GeowissenschaftenJohann Wolfgang Goethe-UniversitätFrankfurt am MainGermany
  3. 3.Bayrisches GeoinstitutUniversität BayreuthBayreuthGermany

Personalised recommendations