Contributions to Mineralogy and Petrology

, Volume 157, Issue 2, pp 231–244 | Cite as

Deformation-related microstructures in magmatic zircon and implications for diffusion

  • Steven Michael Reddy
  • Nicholas E. Timms
  • Patrick Joseph Hamilton
  • Helen R. Smyth
Original Paper


An undeformed glomeroporphyritic andesite from the Sunda Arc of Java, Indonesia, contains zoned plagioclase and amphibole glomerocrysts in a fine-grained groundmass and records a complex history of adcumulate formation and subsequent magmatic disaggregation. A suite of xenocrystic zircon records Proterozoic and Archaean dates whilst a discrete population of zoned, euhedral, igneous zircon yields a SHRIMP U-Pb crystallisation age of 9.3 ± 0.2 Ma. Quantitative microstructural analysis of zircon by electron backscatter diffraction (EBSD) shows no deformation in the inherited xenocrysts, but intragrain orientation variations of up to 30° in 80% of the young zircon population. These variations are typically accommodated by both progressive crystallographic bending and discrete low angle boundaries that overprint compositional growth zoning. Dispersion of crystallographic orientations are dominantly by rotation about an axis parallel to the zircon c-axis [001], which is coincident with the dominant orientation of misorientation axes of adjacent analysis points in EBSD maps. Less common <100> misorientation axes account for minor components of crystallographic dispersion. These observations are consistent with zircon deformation by dislocation creep and the formation of tilt and twist boundaries associated with the operation of <001>{100} and <100>{010} slip systems. The restriction of deformation microstructures to large glomerocrysts and the young magmatic zircon population, and the absence of deformation within the host igneous rock and inherited zircon grains, indicate that zircon deformation took place within a low-melt fraction (<5% melt), mid-lower crustal cumulate prior to fragmentation during magmatic disaggregation and entrainment of xenocrystic zircons during magmatic decompression. Tectonic stresses within the compressional Sunda Arc at the time of magmatism are considered to be the probable driver for low-strain deformation of the cumulate in the late stages of initial crystallisation. These results provide the first evidence of crystal plastic dislocation creep in zircon associated with magmatic crystallisation and indicate that the development of crystal-plastic microstructures in zircon is not restricted to high-strain rocks. Such microstructures have previously been shown to enhance bulk diffusion of trace elements (U, Th and REE) in zircon. The development of deformation microstructures, and therefore multiple diffusion pathways in zircon in the magmatic environment, has significant implications for the interpretation of geochemical data from igneous zircon and the trace element budgets of melts due to the potential enhancement of bulk diffusion and dissolution rates.


Arc magmatism Cumulate Electron backscatter diffraction (EBSD) Cathodoluminescence Crystal plasticity Dislocation creep 



The Australian Research Council (via Grant DP0664078) and Curtin University (via a Targeted Research Fellowship to SMR) are thanked for funding this research. Auke Barnhoorn and Bill Collins are thanked for constructive reviews of the manuscript. The fieldwork and sample collection in East Java was funded by the SE Asia Research Group, Royal Holloway University of London as part of H.R.S’s PhD studies. Thanks are extended to Robert Hall for PhD supervision, LIPI, who provided visas and fieldwork permissions and LEMIGAS who acted as counterpart agency. This paper is The Institute for Geoscience Research (TIGeR) publication No. 117.


  1. Cherniak DJ, Watson EB (2003) Diffusion in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, pp 113–143Google Scholar
  2. Chichagov AV, Varlamov DA, Dilanyan RA, Dokina TN, Drozhzhina NA, Samokhvalova OL et al (2001) MINCRYST: a crystallographic database for minerals, local and network (www) versions. Crystallogr Rep 46:876–879. doi: 10.1134/1.1405882 CrossRefGoogle Scholar
  3. Compston W, Williams IS, Meyer C (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89:B525–B534. doi: 10.1029/JB089iS02p0B525 CrossRefGoogle Scholar
  4. Cummins GL, Richards JR (1975) Ore lead isotope ratios in a continuously changing earth. Earth Planet Sci Lett 28:155–171. doi: 10.1016/0012-821X(75)90223-X CrossRefGoogle Scholar
  5. Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790. doi: 10.1130/G23637A.1 CrossRefGoogle Scholar
  6. Davis DW, Krogh TE, Williams IS (2003) Historical development of zircon geochronology. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, pp 145–181Google Scholar
  7. Dell’Angelo LN, Tullis J (1988) Experimental deformation of partially melted granitic aggregates. J Metamorph Geol 6:495–515. doi: 10.1111/j.1525-1314.1988.tb00436.x CrossRefGoogle Scholar
  8. Dell’Angelo LN, Tullis J, Yund RA (1987) Transition from dislocation creep to melt-enhanced diffusion creep in fine-grained granitic aggregates. Tectonophysics 139:325–332. doi: 10.1016/0040-1951(87)90107-7 CrossRefGoogle Scholar
  9. Dickin AP (2005) Radiogenic isotope geology. Cambridge University Press, p 508Google Scholar
  10. Grimmer H (1980) A unique description of the relative orientation of neighbouring grains. Acta Crystallogr A 36:382–389. doi: 10.1107/S0567739480000861 CrossRefGoogle Scholar
  11. Hall R (2002) Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. J Asian Earth Sci 20:353–431. doi: 10.1016/S1367-9120(01)00069-4 CrossRefGoogle Scholar
  12. Hazen RM, Finger LW (1979) Crystal structure and compressibility of zircon at high pressure. Am Mineral 64:196–201Google Scholar
  13. Hinthorne JR, Anderson CA, Conrad RL, Lovering JF (1979) Single-grain 207Pb/206Pb and U/Pb age determinations with a 10 μm spatial resolution using the ion microprobe mass analyser (IMMA). Chem Geol 25:271–303. doi: 10.1016/0009-2541(79)90061-5 CrossRefGoogle Scholar
  14. Holness MB (2005) Spatial constraints on magma chamber replenishment events from textural observations of cumulates: the Rum layered intrusion, Scotland. J Petrol 46:1585–1601. doi: 10.1093/petrology/egi027 CrossRefGoogle Scholar
  15. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, pp 27–62Google Scholar
  16. Hough PV (1962) Methods and means to recognize complex patterns. US patent 3069654Google Scholar
  17. Humphreys FJ, Bate PS, Hurley PJ (2001) Orientation averaging of electron backscattered diffraction data. J Microsc 201:50–58. doi: 10.1046/j.1365-2818.2001.00777.x CrossRefGoogle Scholar
  18. Humphreys MCS, Blundy JD, Sparks RSJ (2006) Magma evolution and open system processes at Shiveluch Volcano: insights from phenocryst zoning. J Petrol 47:2303–2334. doi: 10.1093/petrology/egl045 CrossRefGoogle Scholar
  19. Kinny PD, Maas R (2003) Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington, pp 327–341Google Scholar
  20. Leroux H, Reimold WU, Koeberl C, Hornemann U, Doukhan JC (1999) Experimental shock deformation in zircon: a transmission electron microscopic study. Earth Planet Sci Lett 169:291–301. doi: 10.1016/S0012-821X(99)00082-5 CrossRefGoogle Scholar
  21. Ludwig KR (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4Google Scholar
  22. Mantle GW, Collins WJ (2008) Quantifying crustal thickness variations in evolving orogens. Correlation between arc basalt composition and Moho depth. Geology 36:87–90. doi: 10.1130/G24095A.1 CrossRefGoogle Scholar
  23. Nelson DR (1997) Compilation of SHRIMP U-Pb zircon geochronology data, 1996. In: vol. Geological Survey of Western Australia, Record, 1997/2. pp 189Google Scholar
  24. Pietranik A, Koepke J, Puziewicz J (2006) Crystallization and resorption in plutonic plagioclase: implications on the evolution of granodiorite magma (Gesiniec granodiorite, Strzelin Crystalline Massif, SW Poland). Lithos 86:260–280. doi: 10.1016/j.lithos.2005.05.008 CrossRefGoogle Scholar
  25. Prior DJ (1999) Problems in determining the misorientation axes, for small angular misorientations, using electron backscatter diffraction in the SEM. J Microsc 195:217–225. doi: 10.1046/j.1365-2818.1999.00572.x CrossRefGoogle Scholar
  26. Reddy SM, Timms NE, Trimby P, Kinny PD, Buchan C, Blake K (2006) Crystal-plastic deformation of zircon: a defect in the assumption of chemical robustness. Geology 34:257–260. doi: 10.1130/G22110.1 CrossRefGoogle Scholar
  27. Reddy SM, Timms NE, Pantleon W, Trimby P (2007) Quantitative characterization of plastic deformation of zircon and geological implications. Contrib Mineral Petrol 153:625–645. doi: 10.1007/s00410-006-0174-4 CrossRefGoogle Scholar
  28. Reddy SM, Timms NE, Eglington BM (2008) Electron backscatter diffraction analysis of zircon: a systematic assessment of match unit characteristics and pattern indexing optimization. Am Mineral 93:187–197. doi: 10.2138/am.2008.2658 CrossRefGoogle Scholar
  29. Reiners PW (2005) Zircon (U-Th)/He thermochronometry. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations and applications. Reviews in mineralogy and geochemistry, vol 58. Mineralogical Society of America, Washington, pp 151–179Google Scholar
  30. Smyth HR, Hamilton PJ, Hall R, Kinny PD (2007) The deep crust beneath island arcs: inherited zircons reveal a Gondwana continental fragment beneath East Java, Indonesia. Earth Planet Sci Lett 258:269–282. doi: 10.1016/j.epsl.2007.03.044 CrossRefGoogle Scholar
  31. Smyth HR, Hall R, Nichols GJ (2008) Cenozoic volcanic arc history in East Java, Indonesia: the stratigraphic record of eruptions on a continental margin. In: Draut AE, Clift PD, Scholl DW (eds) Formation and applications of the sedimentary record in arc collision zones. Geol Soc Am Spec Publ 436: 199–222Google Scholar
  32. Timms N, Kinny P, Reddy S (2006) Enhanced diffusion of Uranium and Thorium linked to crystal plasticity in zircon. Geochem Trans 7:10. doi: 10.1186/1467-4866-7-10 CrossRefGoogle Scholar
  33. Whittaker JM, Müller RD, Sdrolias M, Heine C (2007) Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous. Earth Planet Sci Lett 255:445–457. doi: 10.1016/j.epsl.2006.12.031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Steven Michael Reddy
    • 1
  • Nicholas E. Timms
    • 1
  • Patrick Joseph Hamilton
    • 1
    • 3
  • Helen R. Smyth
    • 2
  1. 1.Department of Applied Geology, The Institute for Geoscience ResearchCurtin University of TechnologyPerthAustralia
  2. 2.Department of Earth Sciences, CASPUniversity of CambridgeCambridgeUK
  3. 3.Intellection Pty. LtdMiltonAustralia

Personalised recommendations