Contributions to Mineralogy and Petrology

, Volume 157, Issue 2, pp 163–172

Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles

  • Jim Watkins
  • Michael Manga
  • Christian Huber
  • Michael Martin
Original Paper

Abstract

Spherulites are spherical clusters of radiating crystals that occur naturally in rhyolitic obsidian. The growth of spherulites requires diffusion and uptake of crystal forming components from the host rhyolite melt or glass, and rejection of non-crystal forming components from the crystallizing region. Water concentration profiles measured by synchrotron-source Fourier transform spectroscopy reveal that water is expelled into the surrounding matrix during spherulite growth, and that it diffuses outward ahead of the advancing crystalline front. We compare these profiles to models of water diffusion in rhyolite to estimate timescales for spherulite growth. Using a diffusion-controlled growth law, we find that spherulites can grow on the order of days to months at temperatures above the glass transition. The diffusion-controlled growth law also accounts for spherulite size distribution, spherulite growth below the glass transition, and why spherulitic glasses are not completely devitrified.

Keywords

Spherulites Obsidian FTIR Advection–diffusion 

References

  1. Carmichael I, Turner F, Verhoogen J (1974) Igneous petrology. McGraw-Hill, New York, p 739Google Scholar
  2. Castro J, Manga M, Martin M, (2005) Vesiculation rates of obsidian domes inferred from H2O concentration profiles. Geophys Res Lett 32:L21307Google Scholar
  3. Castro J, Beck P, Tuffen H, Nichols A, Dingwell D, Martin M (2008) Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. Am Mineral (submitted)Google Scholar
  4. Cross W (1891) Constitution and origin of spherulites in acid eruptive rocks. Philos Soc Wash Bull 11:411–449Google Scholar
  5. Davis B, McPhie J (1996) Spherulites, quench fractures and relict perlite in a Late Devonian rhyolite dyke, Queensland, Australia. J Volcanol Geotherm Res 71:1–11CrossRefGoogle Scholar
  6. Fenn P (1977) The nucleation and growth of alkali feldspars from hydrous melts. Can Mineral 15:135–161Google Scholar
  7. Freer R (1981) Diffusion in silicate minerals and glasses: a data digest and guide to the literature. Contrib Mineral Petrol 76:440–454CrossRefGoogle Scholar
  8. Ghiorso M, Sack R (1995) Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212CrossRefGoogle Scholar
  9. Gonnermann H, Manga M (2003) Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426:432–435CrossRefGoogle Scholar
  10. Granasy L, Pusztai T, Gyorgy T, Warren J, Douglas J (2005) Growth and form of spherulites. Phys Rev 72:011605Google Scholar
  11. Judd J (1888) On the volcanic phenomena of the eruption, and on the nature and distribution of the ejected materials, Part I. In: Symons GJ (ed) The eruption of Krakatoa committee of the royal society. Harrison & Son, London, pp 1–46Google Scholar
  12. Keith H, Jr Padden F (1963) A phenomenological theory of spherulitic crystallization. J Appl Phys 34(8):2409–2421CrossRefGoogle Scholar
  13. Keith H, Jr Padden F (1964a) Spherulitic crystallization from the melt. I. Fractionation and impurity segregation and their influence on crystalline morphology. J Appl Phys 35(4):1270–1285CrossRefGoogle Scholar
  14. Keith H, Jr Padden F (1964b) Spherulitic crystallization from the melt. II. Influence of fractionation and impurity segregation on the kinetics of crystallization. J Appl Phys 35(4):1286–1296CrossRefGoogle Scholar
  15. Kirkpatrick R (1975) Crystal growth from the melt: a review. Am Mineral 60(9–10):798–814Google Scholar
  16. Langer J (1980) Instabilities and pattern formation in crystal growth. Rev Mod Phys 52:1–27Google Scholar
  17. Lewis-Kenedi C, Lange R, Hall C, Delgado-Grenados H (2005) The eruptive history of the Tequila volcanic field, western Mexico: ages, volumes, and relative proportions of lava types. Bull Volcanol 67:391–414CrossRefGoogle Scholar
  18. Lofgren G (1971a) Spherulitic textures in glassy and crystalline rocks. J Geophys Res 76:5635–5648CrossRefGoogle Scholar
  19. Lofgren G (1971b) Experimentally produced devitrification textures in natural rhyolite glass. Geol Soc Am Bull 82:553–560CrossRefGoogle Scholar
  20. MacArthur A, Cas R, Orton G (1998) Distribution and significance of crystalline, perlitic and vesicular textures in the Ordovician Garth Tuff (Wales). Bull Volcanol 60:260–285CrossRefGoogle Scholar
  21. Manley C (1992) Extended cooling and viscous flow of large, hot rhyolite lavas: implications of numerical modeling results. J Volcanolgy and Geotherm Res 53:27–46CrossRefGoogle Scholar
  22. Manley C, Fink J (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15:549–552Google Scholar
  23. Martin M, McKinney W (1998) The first synchrotron infrared beamlines at the advanced light source: microspectroscopy and fast timing. Proc Mater Res Soc 524:11Google Scholar
  24. Mittwede S (1988) Spherulites in the Spring Branch Rhyolite, Western Saluda County, South Carolina. South Carolina Geol 32:21–25Google Scholar
  25. Mullins W, Sekerka R (1963) Morphological stability of a particle growing by diffusion or heat flow. J Appl Phys 34:323–329CrossRefGoogle Scholar
  26. Neuville D, Courtial P, Dingwell D, Richet P (1993) Thermodynamic and rheological properties of rhyolite and andesite melts. Contrib Mineral Petrol 113:572–581CrossRefGoogle Scholar
  27. Newman S, Stolper E, Epstein S (1986) Measurement of water in rhyolitic glasses: calibration of an infrared spectroscopic technique. Am Min 71:1527–1541Google Scholar
  28. Riehle J, Miller T, Bailey R (1995) Cooling, degassing and compaction of rhyolitic ash flow tuffs: a computational model. Bull Volcanol 57:319–336Google Scholar
  29. Ryan M, Sammis C (1981) The glass transition in basalt. J Geophys Res 86:9515–9535Google Scholar
  30. Smith R, Tremallo R, Lofgren G (2001) Growth of megaspherulites in a rhyolitic vitrophyre. Am Mineral 86:589–600Google Scholar
  31. Stevenson R, Briggs R, Hodder A (1994) Physical volcanology and emplacement history of the Ben Lomond rhyolite lava flow, Taupo Volcanic Centre, New Zealand. N Z J Geol Geophys 37:345–358Google Scholar
  32. Stolper E (1982) Water in silicate glasses: an infrared spectroscopic study. Contrib Mineral Petrol 81:1–17CrossRefGoogle Scholar
  33. Swanson S (1977) Relation of nucleation and crystal-growth rate to the development of granitic textures. Am Mineral 62:966–978Google Scholar
  34. Swanson S, Naney M, Westrich H, Eichelberger J (1989) Crystallization history of Obsidian Dome, Inyo Domes, California. Bull Volcanol 51:161–176CrossRefGoogle Scholar
  35. Westrich H, Stockman H, Eichelberger J (1988) Degassing of rhyolitic magma during ascent and emplacement. J Geophy Res 93:6503−6511CrossRefGoogle Scholar
  36. Zhang Y, Behrens H (2000) H2O diffusion in rhyolitic melts and glasses. Chem Geol 169:243–262CrossRefGoogle Scholar
  37. Zhang Y, Belcher R, Ihinger P, Wang L, Xu Z, Newman S (1997) New calibration of infrared measurement of dissolved water in rhyolitic glasses. Geochim Cosmochim Acta 63(15):3089–3100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Jim Watkins
    • 1
  • Michael Manga
    • 1
  • Christian Huber
    • 1
  • Michael Martin
    • 2
  1. 1.Department of Earth and Planetary ScienceUniversity of CaliforniaBerkeleyUSA
  2. 2.Advanced Light SourceLawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations