Advertisement

Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California

  • Sung Hi Choi
  • John W. Shervais
  • Samuel B. Mukasa
Original Paper

Abstract

The Coast Range ophiolite (CRO) of California is one of the most extensive tracts of oceanic crust preserved in the North American Cordillera, but its origin has long remained controversial. We present here new data on mineral compositions in mantle peridotites that underlie crustal sections of the ophiolite, and show that these are dominantly refractory harzburgites related to high apparent melting in a supra-subduction zone (SSZ) setting. Abyssal peridotite (characterized by high-Al spinels and relatively high Ti, Na, Nd, Sm, Lu, and Hf in pyroxene) occurs at one location where it is associated with SSZ mantle peridotite and volcanic rocks with both oceanic and arc-like geochemistry. SSZ mantle peridotites (characterized by intermediate-Cr/Al or high-Cr spinels, and by extremely low Ti, Na, Nd, Sm, Lu, and Hf in pyroxenes) are associated with crustal sections containing arc-related volcanic rocks, including boninites. This convergence between conclusions based on crustal lithologies and their underlying mantle sections confirms previous proposals that link the CRO to SSZ processes, and seriously undermines hypotheses that invoke formation of the ophiolite at a mid-ocean ridge spreading center.

Notes

Acknowledgments

This research was supported by NSF grants EAR0440255 (Shervais), EAR0440238 (Mukasa) and KOSEF grant R01-2007-000-20443-0 (Choi). Insightful reviews of an earlier version of this manuscript by Robert Coleman, Julian Pearce, and Linda Elkins-Tanton greatly improved the manuscript. Two anonymous CMP reviewers also helped us to clarify a number of points made in the manuscript. All of these reviewers are gratefully acknowledged.

References

  1. Arai S (1994) Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretations. Chem Geol 113:191–204CrossRefGoogle Scholar
  2. Batanova VG, Sobolev AV (2000) Compositional heterogeneity in subduction-related mantle peridotites, Troodos massif, Cyprus. Geology 28:55–58CrossRefGoogle Scholar
  3. Brandon AD, Snow JE, Walker RJ, Morgan JW, Mock TD (2000) 190Pt­186Os and 187Re­187Os systematics of abyssal peridotites. Earth Planet Sci Lett 177:319–335CrossRefGoogle Scholar
  4. Bizimis M, Salters VJM, Bonatti E (2000) Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem Geol 165:67–85CrossRefGoogle Scholar
  5. Brouxel M, Lapierre H (1988) Geochemical study of an early Paleozoic insland-arc-back-arc basin system. Part 1: The Trinity Ophiolite (northern California). GSA Bull 100:1111–1119Google Scholar
  6. Choi SH, Mukasa SB, Shervais JW (2008) Initiation of Franciscan subduction along a large-offset fracture zone: evidence from mantle peridotites, Stonyford, California. Geology (in press)Google Scholar
  7. Coleman RG (2000) Prospecting for ophiolites along the California continental margin. In: Dilek Y, Moores E, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust. Geol Soc Am Spec Publ, vol 349, pp 351–364Google Scholar
  8. Dick HJB (1989) Abyssal peridotites, very slow spreading ridges, and ocean ridge magmatism. In: Saunders AJ, Norry MJ (eds) Magmatism in the Oceanic Basins. Geol Soc London Spec Publ, vol 42, pp 71–105Google Scholar
  9. Dick HJB, Bullen T (1984) Chromian spinal as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76CrossRefGoogle Scholar
  10. Dick HHB, Fisher RL, Bryan WB (1984) Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet Sci Lett 69:88–106CrossRefGoogle Scholar
  11. Edwards SJ, Falloon TJ, Malpas J, Pedersen RB (1996) A review of the petrology of harzburgites at Hess Deep and Garrett Deep: implications for mantle processes beneath Segments of the East Pacific Rise. In: MacLeod CJ, Tyler PA, Walker CL (eds) Tectonic, magmatic, hydrothermal and biological segmentation of mid-ocean ridges. Geol Soc London Spec Publ, vol 118, pp 143–156Google Scholar
  12. Evarts RC, Coleman RG, Schiffman P (1999) The Del Puerto ophiolite: petrology and tectonic setting. In: Wagner DL, Graham SA (eds) Geologic Field Trips in Northern California. California Division of Mines and Geology Spec Publ, vol 119, pp 136–149Google Scholar
  13. Falloon TJ, Green DH, Hatton CJ, Harris KL (1988) Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J Petrol 29:1257–1282Google Scholar
  14. Gaetani GA, Grove TL (1998) The influence of water on melting of mantle peridotite. Contrib Mineral Petrol 131:323–346CrossRefGoogle Scholar
  15. Giaramita MI, MacPherson GJ, Phipps SP (1998) Petrologically diverse basalts from a fossil oceanic forearc in California: the Llanada and Black Mountain remnants of the Coast Range ophiolite. Geol Soc Am Bull 110:553–571CrossRefGoogle Scholar
  16. Godfrey NJ, Dilek Y (2000) Mesozoic assimilation of oceanic crust and island arc into the North American continental margin in California and Nevada: insights from geophysical data. In: Dilek Y, Moores EM, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust: new insights from field studies and the Ocean Drilling Program. Geol Soc Am Boulder Spec Paper, vol 349, pp 365–382Google Scholar
  17. Hamlyn PR, Bonatti E (1980) Petrology of mantle-derived ultramafics from the Owen fracture zone, northwest Indian ocean: implications for the nature of the oceanic upper mantle. Earth Planet Sci Lett 48:65–79CrossRefGoogle Scholar
  18. Harper GD (2003) Fe–Ti basalts and propagating-rift tectonics in the Josephine Ophiolite. Geology 115:771–787Google Scholar
  19. Harvey J, Gannoun A, Burton KW, Rogers NW, Alard O, Parkinson IJ (2006) Ancient melt extraction from the oceanic upper mantle revealed by Re–Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet Sci Lett 244:606–621CrossRefGoogle Scholar
  20. Hellebrand E, Snow JE, Dick HJ, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681CrossRefGoogle Scholar
  21. Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet field melting and late stage refertilization in residual abyssal peridotites from the Central Indian ridge. J Petrol 43:2305–2338CrossRefGoogle Scholar
  22. Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489CrossRefGoogle Scholar
  23. Hopson CA, Pessagno EA Jr (2005) Tehama-Colusa serpentinite mélange: a remnant of Franciscan Jurassic oceanic lithosphere, northern California. Int Geol Rev 47:65–100CrossRefGoogle Scholar
  24. Hopson CA, Mattinson JM, Pessagno EA (1981) Coast Range ophiolite, western California. In: Ernst WG (ed) The Geotectonic Development of California. Rubey, vol 1, pp 418–510Google Scholar
  25. Hopson CA, Mattinson JM, Pessagno EA, Luyendyk BP (2008) California Coast Range ophiolite: Composite Middle and Late Jurassic oceanic lithosphere. In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geol Soc Am Spec Paper 438:1–102. doi: 10.1130/2008.2438(01)
  26. Ingersoll RA (2000) Models for origin and emplacement of Jurassic ophiolites of northern California. In: Dilek Y, Moores E, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust. Geol Soc Am Spec Publ, vol 349, pp 395–402Google Scholar
  27. Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogasawara-Mariana forearc, Leg 125. In: Proceedings of the ocean drilling program, scientific results 125. Texas A & M University, Ocean Drilling Program, College Station, pp 445–485Google Scholar
  28. Ishikawa T, Nagaishi K, Umino S (2002) Boninitic volcanism in the Oman ophiolite: Implications for thermal condition during transition from spreading ridge to arc. Geology 30:899–902CrossRefGoogle Scholar
  29. Johnson KTM, Dick HJB (1992) Open system melting and temporal and spatial variation of peridotite and basalt at the Atlantis II fracture zone. J Geophys Res 97:9219–9241CrossRefGoogle Scholar
  30. Johnson KTM, Dick HJB, Shimizu N (1990) Melting in the oceanic upper mantle; an ion microprobe study of diopsides in abyssal peridotites. J Geophys Res 95:2661–2678CrossRefGoogle Scholar
  31. Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641CrossRefGoogle Scholar
  32. Kelemen PB, Hirth G, Shimizu N, Spiegelman M, Dick HJB (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil Trans R Soc Lond 355:283–318CrossRefGoogle Scholar
  33. Kinzler RJ, Grove TL (1993) Corrections and further discussion of the primary magmas of mid-ocean ridge basalts, 1 and 2. J Geophys Res 98:22339–22348CrossRefGoogle Scholar
  34. Le Mée L, Girardeau J, Monnier C (2004) Mantle segmentation along the Oman ophiolite fossil mid-ocean ridge. Nature 432:167–172CrossRefGoogle Scholar
  35. Loney R, Himmelberg G, Coleman RG (1971) Structure and petrology of alpine-type peridotite at Burro Mountain, California, USA. J. Petrol 12:245–309Google Scholar
  36. Mattinson JM, Hopson CA (2008) New high-precision CA-TIMS U-Pb zircon plateau ages for the Point Sal and San Simeon ophiolite remnants, California Coast Ranges. In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geol Soc Am Spec Paper 438:103–112. doi: 10.1130/2008.2438(02)
  37. Metcalf RV, Shervais JW (2008) Supra-Subduction Zone (SSZ) Ophiolites: is there really an “Ophiolite Conundrum”? In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geol Soc Am Spec Paper, vol 438, pp191–222. doi:  10.1130/2008.2438(07)
  38. Miyashiro A (1973) The Troodos complex was probably formed in an island arc. Earth Planet Sci Lett 19:218–224CrossRefGoogle Scholar
  39. Moores E, Kellogg LH, Dilek Y (2000) Tethyan ophiolites, mantle convection, and tectonic “historical contingency”: a resolution of the “ophiolite conundrum” In: Dilek Y, Moores E, Elthon D, Nicolas A (eds) Ophiolites and oceanic crust. Geol Soc Am Spec Publ, vol 349, pp 3–12Google Scholar
  40. Münter O, Pettke T, Desmurs L, Meier M, Schaltegger U (2004) Refertilization of mantle peridotite in embryonic ocean basins: trace element and Nd isotopic evidence and implications for crust–mantle relationships. Earth Planet Sci Lett 221:293–308CrossRefGoogle Scholar
  41. Ohara Y, Stern RJ, Ishii T, Yurimoto H, Yamazaki T (2002) Peridotites from the Mariana trough: first look at the mantle beneath an active back-arc basin. Contrib Mineral Petrol 143:1–18Google Scholar
  42. Parkinson IJ, Pearce JA (1998) Peridotites of the Izu-Bonin-Mariana forearc (ODP Leg 125) evidence for mantle melting and melt–mantle interactions in a suprasubduction zone setting. J Petrol 39:1577–1618CrossRefGoogle Scholar
  43. Parkinson IJ, Hawkesworth CJ, Cohen AS (1998) Ancient mantle in a modern arc: Osmium isotopes in Izu-Bonin-Mariana forearc peridotites. Science 281:2011–2013CrossRefGoogle Scholar
  44. Parkinson IJ, Pearce JA, Thirwall MF, Johnson KTM, Ingram G (1992) Trace element geochemistry of peridotites from the Izu-Bonin-Mariana forearc, Leg 125. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings of ODP science results, vol 125. Ocean Drilling Program, College Station, pp 487–506Google Scholar
  45. Pearce JA, Lippard SJ, Roberts S (1984) Characteristics and tectonic significance of supra-subduction zone ophiolites. In: Kokelaar PB, Howells MF (eds) Marginal basin geology. Geol Soc London Spec Publ, vol 16, pp 77–94Google Scholar
  46. Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, south Atlantic. Contrib Mineral Petrol 139:36–53CrossRefGoogle Scholar
  47. Piccardo GB, Muentener O, Zanetti A, Pittke T (2004) Ophiolitic peridotites of the Alpine–Apennine system: mantle processes and geodynamic relevance. Int Geol Rev 46:1119–1159CrossRefGoogle Scholar
  48. Rampone E, Hofmann AW, Raczek I (1998) Isotopic contrasts within the Internal Liguride ophiolite (N. Italy): the lack of a genetic mantle–crust link. Earth Planet Sci Lett 163:175–189CrossRefGoogle Scholar
  49. Robinson PT, Melson WG, O’Hearn T, Schmincke HU (1983) Volcanic glass compositions of the Troodos ophiolite, Cyprus. Geology 11:400–404CrossRefGoogle Scholar
  50. Seyler M, Toplis MJ, Lorand JP, Luguet A, Cannat M (2001) Clinopyroxene microtextures reveal incompletely extracted melt in abyssal peridotites. Geology 29:155–158CrossRefGoogle Scholar
  51. Seyler M, Lorand J-P, Dick HJB, Drouin M (2007) Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15–20 N: ODP Hole 1274A. Contrib Mineral Petrol 153:303–319CrossRefGoogle Scholar
  52. Shervais JW (1990) Island arc and ocean crust ophiolites: contrasts in the petrology, geochemistry, and tectonic style of ophiolite assemblages in the California Coast Ranges. In: Malpas J, Moores EM, Panayiotou A, Xenophontos C (eds) Ophiolites: oceanic crustal analogues: proceedings of the symposium Troodos 1987. Geological Survey Department, Nicosia, Cyprus, pp 507–520Google Scholar
  53. Shervais JW (2001) Birth, death, and resurrection: the life cycle of suprasubduction zone Ophiolites. Geochem Geophys Geosyst, vol 2 (Paper number 2000GC000080)Google Scholar
  54. Shervais JW (2008) Tonalites, trondhjemites, and diorites of the Elder Creek ophiolite, California: low-pressure slab melting and reaction with the mantle wedge. In: Wright JE, Shervais JW (eds) Ophiolites, arcs, and batholiths: a tribute to Cliff Hopson. Geol Soc Am Spec Paper, vol 438, pp 113–132. doi: 10.1130/2008.2438(03)
  55. Shervais JW, Kimbrough DL (1985) Geochemical evidence for the tectonic setting of the Coast Range ophiolite; a composite island arc–oceanic crust terrane in western California. Geology (Boulder) 13:35–38CrossRefGoogle Scholar
  56. Shervais JW, Kimbrough DL, Renne P, Hanan BB, Murchey B, Snow CA, Schuman MZ, Beaman BJ (2004) Multi-stage origin of the Coast Range Ophiolite, California: implications for the life cycle of Supra-Subduction Zone Ophiolites. Int Geol Rev 46:289–315CrossRefGoogle Scholar
  57. Shervais JW, Murchey BL, Kimbrough DL, Renne PR, Hanan B (2005a) Radioisotopic and biostratigraphic age relations in the Coast Range ophiolite, Northern California; implications for the tectonic evolution of the western Cordillera. Geol Soc Am Bull 117:633–653CrossRefGoogle Scholar
  58. Shervais JW, Zoglman-Schuman MM, Hanan BB (2005b) The Stonyford volcanic complex: a forearc seamount in the Northern California Coast Ranges. J Petrol 46:2091–2128CrossRefGoogle Scholar
  59. Shervais JW, Kolesar P, Andreasen K (2005c) Field and chemical study of serpentinization—Stonyford, California: chemical fluxes and mass balance. Int Geol Rev 47:1–23CrossRefGoogle Scholar
  60. Shibata T, Thompson G (1986) Peridotites from the Mid-Atlantic Ridge at 43oN and their petrogenetic relation to abyssal tholeiites. Contrib Mineral Petrol 93:144–159CrossRefGoogle Scholar
  61. Snow CA (2002) Geology of the Cuesta Ridge ophiolite remnant near San Luis Obispo, California: evidence for the tectonic setting and origin of the Coast Range ophiolite. MS Thesis, Utah State University, 150 pGoogle Scholar
  62. Sovolev AV, Danyushevsky LV (1994) Petrology and geochemistry of boninites from the north termination of the Tonga trench: constraints on the generation conditions of primary high-Ca boninite magma. J Petrol 35:1183–1211Google Scholar
  63. Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636CrossRefGoogle Scholar
  64. Sun S-S, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345CrossRefGoogle Scholar
  65. Van der Laan SR, Arculus RJ, Pearce JA, Murton BJ (1992) Petrography, mineral chemistry, and phase relations of the basement boninite series of site 786, Izu-Bonin forearc. In: Proceedings of the ocean drilling program, scientific results. 125. Texas A & M University, Ocean Drilling Program, College Station, pp 171–201Google Scholar
  66. Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44:1163–1191CrossRefGoogle Scholar
  67. White WM (1993) 238U/204Pb in MORB and open system evolution of the depleted mantle. Earth Planet Sci Lett 115:211–226CrossRefGoogle Scholar
  68. Wright JE, Fahan MR (1988) An expanded view of Jurassic orogenesis in the western United States Cordillera; Middle Jurassic (pre-Nevadan) regional metamorphism and thrust faulting within an active arc environment, Klamath Mountains, California. Geol Soc Am Bull 100:859–876CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Sung Hi Choi
    • 1
    • 2
  • John W. Shervais
    • 3
  • Samuel B. Mukasa
    • 1
  1. 1.Department of Geological SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Korea Polar Research InstituteIncheonSouth Korea
  3. 3.Department of GeologyUtah State UniversityLoganUSA

Personalised recommendations