Contributions to Mineralogy and Petrology

, Volume 156, Issue 4, pp 517–527 | Cite as

Zircon coronas around Fe–Ti oxides: a physical reference frame for metamorphic and metasomatic reactions

  • Håkon AustrheimEmail author
  • Christine V. Putnis
  • Ane K. Engvik
  • Andrew Putnis
Original Paper


Ilmenite in coronitic gabbros from the Bamble and Kongsberg sectors, southern Norway, is surrounded by zircons ranging in diameters from a fraction of a micrometer to 10 μm across. The zircons are inert during subsequent metamorphism (amphibolite- to pumpellyite–prehnite facies) and metasomatism (scapolitization and albitization) and can be found as trails in silicates (phlogopite, talc, chlorite, amphibole, albite, and tourmaline) in the altered rocks. The trails link up to form polygons outlining the former oxide grain boundary. This 3-dimensional framework of zircons is used to (a) recognize metasomatic origin of rocks, (b) quantify the mobility of elements during mineral replacement, (c) establish the growth direction of reaction fronts and to identify the reaction mechanism as dissolution–reprecipitation. Zircon coronas on Fe–Ti oxides have been described from a number of terrains and appear to be common in mafic rocks (gabbros and granulites) providing a tool for a better understanding of metasomatic and metamorphic reactions.


Zircon Ilmenite Rutile Titanite Coronas Metamorphic and metasomatic reactions 



We thank Muriel Erambert (Oslo) and Jasper Berndt-Gerdes (Münster) for help with EMP analyses. Ingrid A. Munz kindly provided thin sections from Modum. Careful and constructive reviews by W. Peck and an anonymous reviewer are gratefully acknowledged. The work was supported by a Center of Excellence grant from the Norwegian Research Council to PGP and a Humboldt Research Award to H. A.


  1. Abart R, Kunze K, Milke R, Sperb R, Heinrich W (2004) Silicon and oxygen self diffusion in enstatite polycrystals: the Milke et al. (2001) rim growth experiments revisited. Contrib Mineral Petrol 147:633–646CrossRefGoogle Scholar
  2. Alirezaei S, Cameron EM (2002) Mass balance gabbro–amphibolite transition, Bamble sector, Norway: implications for petrogenesis and tectonic setting of gabbros. Lithos 60:21–45CrossRefGoogle Scholar
  3. Arnesen N (1997) Retrograde metamorphose av Granulitt facies mangeritt, Radøy-Nordhordland. Unpublished Cand Scient Thesis, University of Oslo, 119 ppGoogle Scholar
  4. Ashworth JR, Joesten R (1986) The role of mamatic reactions, differentiation and annealing in the evolution of coronitic microstructures in troctolitic gabbros from Risør, Norway––a discussion. Mineral Mag 50:469–473CrossRefGoogle Scholar
  5. Bingen B, Austrheim H, Whitehouse M (2001) Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of Western Norway and implications for zircon geochronology. J Petrol 42:355–375CrossRefGoogle Scholar
  6. Bingen B, Skår Ø, Marker M, Sigmond EMO, Nordgulen Ø, Ragnhildstveit J, Mansfeld J, Tucker RD, Liégeois JP (2005) Timing of the continental building in the Sveconorwegian orogen, SW Scandinavia. Nor J Geol 85:87–116Google Scholar
  7. Bodart DE (1968) On the paragenesis of albitites. Norsk Geol Tidsskr 48:269–280Google Scholar
  8. Brindley GW, Hayami R (1965) Kinetics and mechanism of formation of forsterite (Mg2SiO4) by solid state reaction of MgO and SiO2. Philos Mag 12:505–514CrossRefGoogle Scholar
  9. Brøgger WC (1935) On several Archean rocks from the south coast of Norway. II. The south Norwegian hyperites and their metasomatism. Skrifter Norsk Vitenskaps-Akademi I Oslo, Matematisk-Naturvitenskapelig Klasse 1, 421 pGoogle Scholar
  10. Brøgger WC, Reusch HH (1875) Vorkommen des Apatit in Norwegen. Z der Dtsch Geol Ges 27:646–702Google Scholar
  11. Carmichael DM (1969) On the mechanism of prograde metamorphic reactions in quartz bearing-pelitic rocks. Contrib Mineral Petrol 20:244–267CrossRefGoogle Scholar
  12. Charlier B, Skår Ø, Korneliussen A, Duchesne J-C, Auwera JV (2007) Ilmenite composition in the Tellnes Fe–Ti deposit, SW Norway: fractional crystallization, postcumulus evolution and ilmenite–zircon relation. Contrib Mineral Petrol 154:119–134CrossRefGoogle Scholar
  13. Dahlgren S, Bogoch R, Magartiz M, Michard A (1993) Hydrothermal dolomite marbles associated with charnockitic magmatism in Proterozoic Bamble shear belt, south Norway. Contrib Mineral Petrol 113:394–409CrossRefGoogle Scholar
  14. Degeling H, Eggins S, Ellis DJ (2001) Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral Mag 65:749–758CrossRefGoogle Scholar
  15. Fistler GW, Mackwell SJ (1994) Kinetics of diffusion-controlled growth of fayalite. Phys Chem Mineral 21:156–165CrossRefGoogle Scholar
  16. Gresens RL (1966) Composition––volume relationships of metasomatism. Chem Geol 2:47–65CrossRefGoogle Scholar
  17. de Haas GJL, Nijland TG, Valbracht PJ, Maijer C, Verschure R, Andersen T (2002) Magmatic versus metamorphic origin of olivine––plagioclase coronas. Contrib Mineral Petrol 143:537–550CrossRefGoogle Scholar
  18. Harlov DE, Förster H-J, Nijland TG (2002) Fluid-induced nucleation of (Y + REE)-phosphate minerals within apatite: nature and experiment. Part I. Chloroapatite. Am Mineral 87:245–261Google Scholar
  19. Hayden LA, Watson EB, Wack DA (2007) A thermobarometer for sphene (titanite). Contrib Mineral Petrol 155:529–540. doi: 10.1007/s00410-007-0256y CrossRefGoogle Scholar
  20. Joesten R (1986a) The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risør, Norway––reply. Mineral Mag 50:474–479CrossRefGoogle Scholar
  21. Joesten R (1986b) The role of magmatic reaction, diffusion and annealing in the evolution of coronitic microstructure in troctolitic gabbro from Risør, Norway. Mineral Mag 50:441–467CrossRefGoogle Scholar
  22. Korneliussen A, Furuhaug L (1993) Ødegåreden rutilforekomst: En rutilførende skapolittomvandlet gabbro ved Ødegårdens Verk, Bamle. Norges geologiske undersökelse rapport 93.078, 46 pGoogle Scholar
  23. Korzhinskii DS (1968) The theory of metasomatic zoning. Min Deposita (Berl) 3:222–231Google Scholar
  24. Milke R, Wiedenbeck M, Heinrich W (2001) Grain boundary diffusion of Si, Mg, and O in enstatite reaction rims: a SIMS study using isotopically doped reactants. Contrib Mineral Petrol 142:15–26CrossRefGoogle Scholar
  25. Morisset CE, Scoates JS, Weis D (2005) Exolution origin for zircon rims around hemo-ilmenite in magmatic Fe–Ti oxide deposits. Geochim Cosmochim Acta 69(10):A16–A16 Suppl S, May 2005Google Scholar
  26. Munz IA, Morvik R (1991) Metagabbros in the Modum Complex, Southern Norway: an important heat source for the Sveconorwegian metamorphism. Precambrian Res 52:97–113CrossRefGoogle Scholar
  27. Munz IA, Wayne D, Austrheim H (1994) Retrograde fluid infiltration in the high-grade Modum Complex, South Norway: evidence for age, source and REE mobility. Contrib Mineral Petrol 116:32–46CrossRefGoogle Scholar
  28. Oftedahl C (1980) Geology of Norway. Nor Geol Unders 356Google Scholar
  29. Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66(5):689–708CrossRefGoogle Scholar
  30. Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180:1783–1786CrossRefGoogle Scholar
  31. Putnis CV, Tsukamoto K, Nishimura Y (2005) Direct observations of pseudomorphism: compositional and textural evolution at a fluid–solid interface. Am Mineral 90:1909–1912CrossRefGoogle Scholar
  32. Rasmussen B (2005) Zircon growth in very low grade metasedimentary rocks: evidence for zirconium mobility at ∼250°C. Contrib Mineral Petrol 150:146–155CrossRefGoogle Scholar
  33. Reynolds RC Jr, Fredrickson AF (1962) Corona development in Norwegian hyperites and its bearing on the metamorphic facies consept. Geol Soc Am Bull 73:59–72CrossRefGoogle Scholar
  34. Sláma J, Košler J, Pedersen RB (2007) Behaviour of zircon in high-grade metamorphic rocks: evidence from Hf isotopes, trace elements and textural studies. Contrib Mineral Petrol 154:335–356CrossRefGoogle Scholar
  35. Söderlund P, Söderlund U, Möller C, Gorbatschev R, Rodhe A (2004) Petrology and ion microprobe U–Pb chronology applied to a metabasic intrusion in southern Sweden: a study on zircon formation during metamorphism and deformation. Tectonics 23, TC5005Google Scholar
  36. Strada E, Talarico FM, Florindo F (2006) Magnetic petrology of variably retrogressed eclogite and amphibolites: a case study from the Hercynian basement of northern Sardinia (Italy). J Geophys Res 111, B12S26Google Scholar
  37. Thompson J, Peck WH (2003) Metamorphic zircon in Fe–Ti ores, Morin Anorthosite Complex (Grenville Province, Quebec). In: Northeastern section-38 annual GSA meeting, paper no. 38-40Google Scholar
  38. Tomkins HS, Powell R, Ellis DJ (2007) The pressure dependence of the zirconium-in-rutile thermometer. J Metamorph Geol 25:703–713CrossRefGoogle Scholar
  39. Tong LX, Jahn BM, Iizuka Y, Xu ZQ (2007) Assemblages and textural evolution of UHP eclogites from the Chinese Continental Scientific Drilling Main Hole. Int Geol Rev 49(11):73–89CrossRefGoogle Scholar
  40. Vernon RH (1983) Metamorphic processes. Reactions and microstructure development. George Allen & Unwin, LondonGoogle Scholar
  41. Vogt JHL (1910) Norges jernmalmforekomster. Nor Geol Unders 51:225Google Scholar
  42. Zack T, Moraes R, Kronz A (2004) Temperature dependence of Zr in rutile: empirical calibration of a rutile thermomenter. Contrib Mineral Petrol 148:471–488CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Håkon Austrheim
    • 1
    Email author
  • Christine V. Putnis
    • 2
  • Ane K. Engvik
    • 3
  • Andrew Putnis
    • 2
  1. 1.Physics of Geological Processes (PGP)University of OsloOsloNorway
  2. 2.Institut für MineralogieUniversity of MünsterMünsterGermany
  3. 3.Geological Survey of NorwayTrondheimNorway

Personalised recommendations