Contributions to Mineralogy and Petrology

, Volume 156, Issue 1, pp 73–86 | Cite as

Quaternary adakite—Nb-enriched basalt association in the western Trans-Mexican Volcanic Belt: is there any slab melt evidence?

Original Paper

Abstract

A spatial and temporal association between adakitic rocks and Nb-enriched basalts (NEB) is recognised for the first time in the western sector of the Trans-Mexican Volcanic Belt in the San Pedro–Cerro Grande Volcanic Complex (SCVC). The SCVC is composed of subalkalic intermediate to felsic rocks, spanning in composition from high-silica andesites to rhyolites, and by the young transitional hawaiite and mugearite lavas of Amado Nervo shield volcano. Intermediate to felsic rocks of the SCVC show many geochemical characteristics of typical adakites, such as high Sr/Y ratios (up to 180) and low Y (<18 ppm) and Yb contents. Mafic Amado Nervo rocks have high TiO2 (1.5–2.3 wt%), Nb (14–27 ppm), Nb/La (0.5–0.9) and high absolute abundances of HFSE similar to those shown by NEB. However, the Sr and Nd isotopic signature of SCVC rocks is different from that shown by typical adakites and NEB. Although the adakites–NEB association has been traditionally considered as a strong evidence of slab-melting, we suggest that other processes can lead to its generation. Here, we show that parental magmas of adakitic rocks of the SCVC derive their adakitic characteristic from high-pressure crystal fractionation processes of garnet, amphibole and pyroxene of a normal arc basalt. On the other hand, Amado Nervo Na-alkaline parental magmas have been generated by sediment melting plus MORB-fluid flux melting of a heterogeneous mantle wedge, consisting of a mixture of depleted and an enriched mantle sources (90DM + 10EM). We cannot exclude a contribution to the subduction component of slab melts, because the component signature is dominated by sediment melt, but we argue that caution is needed in interpreting the adakites–NEB association in a genetic sense.

Keywords

Adakite–Nb-enriched basalt association Slab melts and fluids Sediment melts Western Mexico 

References

  1. Aguillón-Robles A, Calmus T, Benoit M, Bellon MH, Maury RC, Cotten J, Bourgois J, Michaud F (2001) Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific Rise subduction below southern California? Geology 19(6):531–534CrossRefGoogle Scholar
  2. Allan JF (1986) Geology of the Colima and Zacoalco grabens, SW Mexico: Late Cenozoic rifting in the Mexican Volcanic Belt. Geol Soc Am Bull 97:473–485CrossRefGoogle Scholar
  3. Bacon CR, Druitt TH (1988) Compositional evolution of the Zoned Calcalkaline Magma Chamber of Mount-Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98(2):224–256CrossRefGoogle Scholar
  4. Bandy W, Kostoglodov V, Hurtado-Diaz A, Mena M (1999) Structure of the southern jalisco subduction zone, Mexico, as inferred from gravity and seismicity. Geof Int 38:127–136Google Scholar
  5. Blatter DL, Lang Farmer G, Carmichael ISE (2007) A north–south transect across the Central Mexican Volcanic Belt at ∼100°W: spatial distribution, petrological, geochemical, and isotopic characteristics of Quaternary volcanism. J Petrol 48(5):901–950CrossRefGoogle Scholar
  6. Borg LE, Clynne MA, Bullen TD (1997) The variable role of slab-derived fluids in the generation of a suite of primitive calcalkaline lavas from the southernmost Cascades, California. Can Mineral 35:425–452Google Scholar
  7. Brenan JM, Shaw HF, Ryerson FJ, Phinney DL (1995) Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt. Earth Planet Sci Lett 135:1–11CrossRefGoogle Scholar
  8. Castillo PR (2006) An overview of adakite petrogenesis. Chin Sci Bull 51(1):1–12CrossRefGoogle Scholar
  9. Castillo PR, Janney PE, Solidum RU (1999) Petrology and geochemistry of Caminguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contrib Mineral Petrol 134:33–51CrossRefGoogle Scholar
  10. Castillo PR, Solidum RU, Punongbayan RS (2002) Origin of high field strength element enrichment in the Sulu Arc, Southern Philippines, revisited. Geology 30:707–710CrossRefGoogle Scholar
  11. Cervantes P, Wallace PJ (2003) Role of H2O in subduction-zone magmatism: new insights from melt inclusions in high-Mg basalts from central Mexico. Geology 31:235–238CrossRefGoogle Scholar
  12. Chung SL, Liu D, Ji J, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024CrossRefGoogle Scholar
  13. Church SE, Tatsumoto M (1975) Lead isotope relations in oceanic ridge basalts from the Juan de Fuca-Gorda ridge area, N.E. Pacific Ocean. Contrib Mineral Petrol 53(4):253–279CrossRefGoogle Scholar
  14. Class C, Miller DM, Goldstein SL, Langmuir CH (2000) Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc. Geochem Geophys Geosyst 1. doi:1999GC000010
  15. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  16. Defant MJ, Drummond MS (1993) Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 21:547–550CrossRefGoogle Scholar
  17. Defant MJ, Kepezhinskas P (2001) Evidence suggests slab melting in arc magmas. Eos Trans AGU 82(6):65–68CrossRefGoogle Scholar
  18. Defant MJ, Jackson TE, Drummond MS, de Boer JZ, Bellon H, Feigenson MD, Maury RC, Stewart RH (1992) The geochemistry of young volcanism throughout western Panama and southern Costa Rica, an overview. Geol Soc Lond J 149:569–579CrossRefGoogle Scholar
  19. DeMets C, Traylen S (2000) Motion of the Rivera plate since 10 Ma relative to the Pacific and North American plates and the mantle. Tectonophysics 318:119–159CrossRefGoogle Scholar
  20. Deremer LA (1986) The geologic and chemical evolution of Volcan Tepetiltic, Nayarit, Mexico. MS thesis, Univ. of Tulane, Tulane, pp 158Google Scholar
  21. Drummound MS, Defant MJ (1990) A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J Geophys Res 95:21503–21521CrossRefGoogle Scholar
  22. Drummond MS, Defant MJ, Kepezhinskas PK (1996) Petrogenesis of slab-derived trondhjemite-tonalite-dacite/adakite magmas. In: Brown M et al (eds) The third Hutton symposium on the origin of granites and related rocks. Geol. Soc. Am. Sp. Paper, vol 315, pp 205–215Google Scholar
  23. Elliot T (1997) Fractionation of U and Th during mantle melting: a reprise. Chem Geol 139:165–183CrossRefGoogle Scholar
  24. Ewart A, Griffin WL (1994) Application of Proton-Microprobe Data to Trace-Element Partitioning in Volcanic-Rocks. Chem Geol 117(1–4):251–284. doi:10.1016/0009-2541(94)90131-7 CrossRefGoogle Scholar
  25. Ferrari L (1995) Miocene shearing along the northern bundary of the Jalisco block and the opening of the Southern Gulf of California. Geology 23:751–754CrossRefGoogle Scholar
  26. Ferrari L (2004) Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology 32:77–80CrossRefGoogle Scholar
  27. Ferrari L, Rosas-Elguera J (2000) Late Miocene to Quaternary extension at the northern boundary of the Jalisco block, western Mexico: the Tepic-Zacoalco rift revised. In: Delgado-Granados H, Aguirre-Diaz G, Stock JM (eds) Cenozoic Tectonics and Volcanism of Mexico. Geol. Soc. Am. Sp. Paper, vol 334(03), pp 41–64Google Scholar
  28. Ferrari L, Petrone CM, Francalanci L (2001) Generation of oceanic-island basalt-type volcanism in the western Trans-Mexican volcanic belt by slab rollback, asthenosphere infiltration, and variable flux-melting. Geology 29:507–510CrossRefGoogle Scholar
  29. Ferrari L, Petrone CM, Francalanci L, Tagami T, Eguchi M, Conticelli S, Manetti P, Venegas-Salgado SV (2003) Geology of the San Pedro–Ceboruco graben, western Trans Mexican Volcanic Belt. Rev Mex Cienc Geolog 20(3):165–181Google Scholar
  30. Garrison JM, Davidson JP (2003) Dubious case for slab melting in the Northern volcanic zone of the Andes. Geology 31(6):565–568CrossRefGoogle Scholar
  31. Ghiorso, Mark S, Hirschmann, Marc M, Reiners, Peter W, Kress, Victor C III (2002) The pMELTS: a revision of MELTS aimed at improving calculation of phase relations and major element partitioning involved in partial melting of the mantle at pressures up to 3 GPa. Geochem Geophys Geosyst 3(5). doi:10.1029/2001GC000217
  32. Gomez-Tuena A, La Gatta AB, Langmuir CH, Goldstein SL, Ortega-Gutiérrez F, Carrasco-Núnez G (2003) Temporal control of subduction magmatism in the Eastern Trans-Mexican Volcanic Belt: mantle sources, slab contributions and crustal contamination. Geochem Geophys Geosyst 4(8). doi:10.1029/2003GC000524
  33. Gomez-Tuena A, Langmuir CH, Goldstein SL, Straub SM, Ortega-Gutierrez F (2007) Geochemical evidence for slab-melting in the Trans-Mexican Volcanic Belt. J Petrol 48(3):537–562CrossRefGoogle Scholar
  34. Graham DW, Zindler A, Kurz MK, Jenkins WJ, Batiza R, Staudigel H (1988) He, Pb, Sr and Nd isotope constraints on magma genesis and mantle heterogeneity beneath young Pacific seamounts. Contrib Mineral Petrol 99:446–463CrossRefGoogle Scholar
  35. Grove TL, Baker MB, Price RC, Parman SW, Elkins-Tanton LT, Chatterjee N, Müntener O (2005) Magnesian andesite and dacite lavas from Mt. Shasta, northern California: products of fractional crystallization of H2O-rich mantle melts. Contrib Mineral Petrol 148:542–565CrossRefGoogle Scholar
  36. Gutscher MA, Spakman W, Bijwaard H, Engdahl ER (2000) Geodynamics of flat subduction: seismicity and tomographic constraints from the Andean margin. Tectonics 19(5):814–833CrossRefGoogle Scholar
  37. Hart SR (1984) A large scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757CrossRefGoogle Scholar
  38. Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189CrossRefGoogle Scholar
  39. Kepezhinskas P, Defant MJ, Drummond MS (1996) Progressive enrichement of island arc mantle by melt-periodotite interaction inferred from Kamchatcka xenoliths. Geoch Cosmoch Acta 60(7):1217–1229CrossRefGoogle Scholar
  40. Kepezhinskas P, McDermott F, Defant MJ, Hochstaedter A, Drummond MS, Hawkesworth CJ, Koloskov A, Maury RC, Bellon H (1997) Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geoch Cosmoch Acta 61(3):577–600CrossRefGoogle Scholar
  41. Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common rocks. Can J Earth Sci 8:523–548Google Scholar
  42. Lagabrielle Y, Guivel C, Maury RC, Bourgois J, Fourcade S, Martin H (2000) Magmatic-tectonic effects of high-thermal regime at the site of active ridge subduction: the Chile Triple Junction model. Tectonophysics 326(3, 4):255–268CrossRefGoogle Scholar
  43. Le Bas MJ, Le Maitre RW, Woolley AR (1992) The construction of the Total Alkali-Silica chemical classification of the volcanic rocks. Mineral Petrol 46:1–22CrossRefGoogle Scholar
  44. Leeman WP, Smith DR, Hildreth W, Palacz Z, Rogers N (1990) Compositional diversity of late Cenozoic basalts in a transect across the southern Washington Cascades: implications for subduction zone magmatism. J Geophys Res 95(B12):19561–19582CrossRefGoogle Scholar
  45. Luhr JF (1992) Slab-derived fluids and partial melting in subduction zones: insights from two contrasting Mexican volcanoes (Colima and Ceboruco). J Volcanol Geotherm Res 54:1–18CrossRefGoogle Scholar
  46. Luhr JF (1997) Extensional tectonics and the diverse primitive volcanic rocks in the western Mexican Volcanic Belt. Can Mineral 35:473–500Google Scholar
  47. Luhr JF (2000) The geology and petrology of Volcan San Juan Nayarit, Mexico and the compositionally zoned Tepic Pumice. J Volcanol Geotherm Res 95:109–156CrossRefGoogle Scholar
  48. Luhr JF, Carmichael ISE (1980) The Colima Volcanic Complex, Mexico: I. Post-caldera andesites from Volcán Colima. Contrib Mineral Petrol 71:343–372CrossRefGoogle Scholar
  49. Luhr JF, Carmichael ISE (1985) Jorullo Volcano, Michocoan, Mexico (1759–1774): the earliest stages of fractionation in calc-alkaline magmas. Contrib Mineral Petrol 90:142–161CrossRefGoogle Scholar
  50. Luhr JF, Carmichael ISE (1990) Petrological monitoring of cyclical eruptive activity at Volcan Colima, Mexico. J Volcanol Geotherm Res 23:235–260CrossRefGoogle Scholar
  51. Luhr J, Allan J, Carmichael ISE, Nelson SA, Hasenaka T (1989) Primitive calc-alkaline and alkaline rock type from the western Mexican Volcanic Belt. J Geophys Res 94:4515–4530CrossRefGoogle Scholar
  52. Mahood G (1981) A summary of the geology and petrology of the Sierra La Primavera, Jalisco, Mexico. J Geophys Res 86:10137–10152CrossRefGoogle Scholar
  53. Maldonaldo-Sanchez G, Schaaf P (2005) Geochemical and isotope data from the Acatlán Volcanic Field, western Trans-Mexican Volcanic Belt: origin and evolution. Lithos 82:455–470CrossRefGoogle Scholar
  54. McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd–Sr isotopic composition of deep sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 34:2015–2050CrossRefGoogle Scholar
  55. Mcpherson CG, Dreher ST, Thirlwall MT (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett BI:581–593CrossRefGoogle Scholar
  56. Nelson SA, Carmichael ISE (1984) Pleistocene to recent alkalic volcanism in the region of Sanganguey volcano, Nayarit, Mexico. Contrib Mineral Petrol 85:321–335CrossRefGoogle Scholar
  57. Nelson SA, Hegre J (1990) Volcan Las Navajas, a Pliocene–Pleistocene trachyte–peralkaline rhyolite volcano in the northwestern Mexican Volcanic Belt. Bull Volcanol 52:186–204CrossRefGoogle Scholar
  58. Pardo M, Suarez G (1995) Shape of the subducted Rivera and Cocos plates in the southern Mexico: seismic and tectonic implications. J Geophys Res 100(B7):12357–12373CrossRefGoogle Scholar
  59. Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subduction oceanic crust. Earth Planet Sci Lett 121:227–244CrossRefGoogle Scholar
  60. Petford N, Atherton MP (1996) Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J Petrol 37:1491–521CrossRefGoogle Scholar
  61. Petrone CM (1998) Studio magmatologico dei sistemi vulcanici nel graben San Pedro–Ceboruco (Nayarit, Messico): coesistenza di magmi a diversa affinità petrologica (in Italian). PhD thesis, University of Florence, Florence, Italy, p 280Google Scholar
  62. Petrone CM, Tagami T, Francalanci L, Matsumura A, Sudo M (2001) Volcanic systems in the San Pedro–Ceboruco graben (Nayarit, Mexico) in the light of new K–Ar geochronological data. Geochem J 35:77–88Google Scholar
  63. Petrone CM, Francalanci L, Carlson RW, Ferrari L, Conticelli S (2003) Unusual coexistence of subduction-related and intraplate-type magmatism: Sr, Nd and Pb isotope and trace elements data from the magmatism of the San Pedro–Ceboruco graben (Nayarit, Mexico). Chem Geol 193:1–24CrossRefGoogle Scholar
  64. Petrone CM, Francalanci L, Ferrari L, Schaaf P, Conticelli S (2006) The San Pedro–Cerro Grande Volcanic Complex (Nayarit, Mexico): inferences on volcanology and magma evolution. In: Siebe C, Aguirre-Dìaz G, Macìas JL (eds) Neogene-Quaternary continental margin volcanism: a perspective form Mexico. Geol Soc Am Sp Paper, vol 402(03), pp 65–98Google Scholar
  65. Plank T, Langmuir CH (1998) The chemical compositon of subducting sediment and its consequences for the crust and mantle. Chem Geol 145:325–394CrossRefGoogle Scholar
  66. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust-mantle recycling. J Petrol 36:891–931Google Scholar
  67. Righter K (2000) A comparison of basaltic volcanism in the Cascades and western Mexico: compositional diversity in continental arcs. Tectonophysics 318:99–117CrossRefGoogle Scholar
  68. Righter K, Rosas-Elguera J (2001) Alkaline Lavas in the Volcanic Front of the Western Mexican Volcanic Belt: Geology and Petrology of the Ayutla and Tapalpa Volcanic Fields. J Petrol 42:2333–2361CrossRefGoogle Scholar
  69. Robin R, Camus G, Gougaurd A (1991) Eruptive and magmatic cycles at Fuego de Colima volcano. J Volcanol Geotherm Res 45(3, 4):209–225CrossRefGoogle Scholar
  70. Rosas-Elguera J, Ferrari L, Garduño-Monroy VH, Urrutia-Fucugauchi J (1996) Continental boundaries of the Jalisco block and their influence in the Pliocene-Quaternary kinematics of western Mexico. Geology 24(10):921–924CrossRefGoogle Scholar
  71. Sajona FG, Maury RC, Bellon H, Cotton J, Defant MJ, Pubellier M (1993) Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology 21:1007–1110CrossRefGoogle Scholar
  72. Sajona FG, Maury RC, Bellon H, Cotten J, Defant M (1996) High field strength element enrichment of Pliocene-Pelistocene island arc basalts, Zomboanga Peninsula, Western Mindanao Philippines. J Petrol 37:693–726CrossRefGoogle Scholar
  73. Saunders AD (1982) Geochemistry of basalts recovered from the Gulf of California during LEG65 of the deep sea drilling project. In: Lewis BTR, Robinson P et al (eds) Init. Repts. DSDP 65i (U.S. Govt. Printing Office), Washington, pp 591–621Google Scholar
  74. Smith AD (1999) The Nd–Sr–Pb isotopic record in abyssal tholeiites from the Gulf of California region, Western Mexico: no evidence for a gulf mouth plume. Int Geol Rev 41:921–931CrossRefGoogle Scholar
  75. Sun SS, McDonough WF (1995) The composition of the Earth. Chem Geol 120(3–4):223–253Google Scholar
  76. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications or mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, Geol Soc Sp Pubbl vol 42, pp 313–346Google Scholar
  77. Verma SP, Nelson SA (1989a) Isotopic and trace element constraints on the origin and evolution of alkaline and calc-alkaline magmas in the northwestern Mexican Volcanic Belt. J Geoph Res 94(B4):4531–4544CrossRefGoogle Scholar
  78. Verma SP, Nelson SA (1989b) Correction to “Isotopic and trace element constraints on the origin and evolution of alkaline and calc-alkaline magmas in the northwestern Mexican Volcanic Belt”. J Geophys Res 96(B6):7679–7681CrossRefGoogle Scholar
  79. Verma SP, Hasenaka T (2004) Sr, Nd, and Pb isotopic and trace element geochemical constraints for a veined-mantle source of magmas in the Michoacán–Guanajuato Volcanic Field, west-central Mexican Volcanic Belt. Geoch J 38:43–65Google Scholar
  80. Wallace PJ, Carmichael ISE (1992) Alkaline and calc-alkaline lavas near Los Volcanes, Jalisco, Mexico: geochemically diversity and its significance in volcanic arcs. Contrib Mineral Petrol 111:423–439CrossRefGoogle Scholar
  81. Wallace PJ, Carmichael ISE (1994) Petrology of Volcán Tequila, Jalisco, Mexico: disequilibrium phenocryst assemblages and evolution of the subvolcanic magma system. Contrib Mineral Petrol 117:345–361CrossRefGoogle Scholar
  82. Watson EB, Ryerson FJ (1986) Partitioning of Zirconium between Clinopyroxene and Magmatic Liquids of Intermediate Composition. Geoch Cosmoch Acta 50(11):2523–2526 doi:10.1016/0016-7037(86)90035-9 CrossRefGoogle Scholar
  83. White WM (1985) Sources of oceanic basalts: radiogenic isotope evidence. Geology 13:115–118CrossRefGoogle Scholar
  84. White WM, Duncan RA (1995) Geochemistry and geochronology of the Society island: new evidences for deep mantle recycling. In: Basu A, Hart SR (eds) Isotope Studies of Crust–Mantle Evolution. AGU, Washington, DC, Geophys Monogr, vol 95, pp 1–23Google Scholar
  85. White WM, Hofmann AW, Puchelt H (1987) Isotope geochemistry of Pacific Mid-Ocean Ridge basalt. J Geophys Res 92(B6):4881–4893CrossRefGoogle Scholar
  86. Wilson M (1989) Igneous Petrogenesis. Chapman & Hall, LondonGoogle Scholar
  87. Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Seliverstov NI, Matvenkov VV (1994) Magnesian andesites and the subduction component in a strongly calc–alkaline series at Piip volcano, far western Aleutians. J Petrol 35:163–204Google Scholar
  88. Yogodzinski GM, Kay RW, Volynets ON, Koloskov AV, Kay SM (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. Geol Soc Am Bull 107:505–519CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.CNR-Istituto Geoscience e Georisorse, Sezione di FirenzeFirenzeItaly
  2. 2.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQueretaroMexico

Personalised recommendations