Contributions to Mineralogy and Petrology

, Volume 155, Issue 4, pp 473–490 | Cite as

Triassic Nb-enriched basalts, magnesian andesites, and adakites of the Qiangtang terrane (Central Tibet): evidence for metasomatism by slab-derived melts in the mantle wedge

  • Qiang Wang
  • Derek A. Wyman
  • Jifeng Xu
  • Yusheng Wan
  • Chaofeng Li
  • Feng Zi
  • Ziqi Jiang
  • Huaning Qiu
  • Zhuyin Chu
  • Zhenhua Zhao
  • Yanhui Dong
Original Paper


New chronological, geochemical, and isotopic data are reported for Triassic (219–236 Ma) adakite-magnesian andesite-Nb-enriched basaltic rock associations from the Tuotuohe area, central Qiangtang terrane. The adakites and magnesian andesites are characterized by high Sr/Y (25–45), La/Yb (14–42) and Na2O/K2O (12–49) ratios, high Al2O3 (15.34–18.28 wt%) and moderate to high Sr concentrations (220–498 ppm) and εND (t) (+0.86 to +1.21) values. Low enrichments of Th, Rb relative to Nb, and subequal normalized Nb and La contents, and enrichments of light rare earth elements combine to distinguish a group of Nb-enriched basaltic rocks (NEBs). They have positive εND (t) (+2.57 to +5.16) values. Positive correlations between Th, La and Nb and an absence of negative Nb anomalies on mantle normalized plots indicate the NEBs are products of a mantle source metasomatized by a slab melt rather than by hydrous fluids. A continuous compositional variation between adakites and magnesian andesites confirms slab melt interaction with mantle peridotite. The spatial association of the NEBs with adakites and magnesian andesites define an “adakitic metasomatic volcanic series” recognized in many demonstrably subduction-related environments (e.g., Mindanao arc, Philippines; Kamchatka arc, Russia; and southern Baja California arc, Mexico). The age of the Touhuohe suite, and its correlation with Triassic NEB to the north indicates that volcanism derived from subduction-modified mantle was abundant prior to 220 Ma in the central Qiangtang terrane.


Adakite Nb-enriched basalt Magnesian andesite Triassic Subduction zone Tibet 



We sincerely thank associate editor Professor Hans Keppler and two anonymous reviewers for their constructive and helpful reviews. Professor Liu Dunyi, Tao Hua, Zhang Yuhai, Hu Shenghong, Zhu Yingtang, Pu Zhiping, Hu Guangqian, Pu Zhiping and Chen Zhenyu are thanked for their assistance with laboratory and fieldwork. We are grateful to Professor Pan Guitang and Dr. Zhu Dicheng for helpful discussions. Financial support for this research was provided by the Major State Basic Research Program of People’s Republic of China (No. 2002CB412601 and 2007CB411308), Chinese Academy of Sciences (KZCX2-YW-128 and KZCX3-SW-143:4) and the National Natural Science Foundation of China (Grant Nos. 40572042, 40425003 and 40421303), and the International Development Fund of The University of Sydney.


  1. Aguillón-Robles A, Caimus T, Bellon H, Maury RC, Cotton J, Bourgois J, Michaud F (2001) Late Miocene adakite and Nb-enriched basalts from Vizcaino Peninsula, Mexico: indicators of East Pacific Rise subduction below southern Baja California. Geology 29:531–534CrossRefGoogle Scholar
  2. Arnaud NO, Vidal Ph, Tapponnier P, Matte P, Deng WM (1992) The high K2O volcanism of northwestern Tibet: geochemistry and tectonic implications. Earth Planet Sci Lett 111:351–367CrossRefGoogle Scholar
  3. Atherton MP, Petford N (1993) Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362:144–146CrossRefGoogle Scholar
  4. Boynton WV (1984) Cosmochemistry of the earth elements: meteorite studies. Rare Earth element geochemistry. In: Henderson R (eds) Developments in geochemistry 2. Elsevier, Amsterdam, pp 89–92Google Scholar
  5. Bruguier O, Lancelot JR, Malavieille J (1997) U–Pb dating on single detrital zircon grains from the Triassic Sonpan-Ganze flysch (Central China): Provenance and tectonic correlations. Earth Planet Sci Lett 152:217–231CrossRefGoogle Scholar
  6. Castillo PR, Solidum RU, Punongbayan RS (2002) Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited. Geology 30:707–710CrossRefGoogle Scholar
  7. Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q, Wang YZ (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev 68:173–196CrossRefGoogle Scholar
  8. Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst 4(1):1005. doi: 10.1029/2002GC000333 CrossRefGoogle Scholar
  9. Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665CrossRefGoogle Scholar
  10. Defant MJ, Kepezhinskas P (2001) Evidence suggests slab melting in arc magmas. EOS 82:62–69CrossRefGoogle Scholar
  11. Defant MJ, Jackson TE, Drummond MS, De Boer JZ, Bellon H, Feigenson MD, Maury RC, Stewart RH (1992) The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. J Geol Soc (London) 149:569–579CrossRefGoogle Scholar
  12. Dewey JF, Shackleton RM, Chang C, Sun Y (1988) The tectonic evolution of the Tibetan Plateau. Philos Trans R Soc Lond A 327:379–413CrossRefGoogle Scholar
  13. Ding L, Kapp P, Zhong DL, Deng WM (2003) Cenozoic volcanic rocks in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44:1833–1865CrossRefGoogle Scholar
  14. Dungan MA, Lindstrom MM, Mmiland NJ et al. (1986) Open system magmatic evoution of the Tos Pateau volcanic field, norhern New Mexico, 1. The petrology and geochemistry of the Servilleta basalt. J Geophys Res 91:5999–6028CrossRefGoogle Scholar
  15. Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Lin WL, Ayerss J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897CrossRefGoogle Scholar
  16. Gao S, Zhang B, Gu X, Xie X, Gao C, Guo X (1995) Silurian–Devonian provenance changes of South Qinling Basin: Implications for accretion of the Yangtze (South China) to the North China Craton. Tectonophys 250:183–197CrossRefGoogle Scholar
  17. Gutscher MA, Maury R, Eissen JP, Bourdon E (2000) Can slab melting be caused by flat subduction? Geology 28:535–538CrossRefGoogle Scholar
  18. Haase KM, Devey CW, Mertz DF, Stoffers P, Garbe-Schönberg D (1996) Geochemistry of lavas from Mohns Ridge, Norwegian–Greenland Sea: implications for melting conditions and magma sources near Jan Mayen. Contrib Mineral Petrol 123:223–237CrossRefGoogle Scholar
  19. Hacker BR, Gnos E, Ratschbacher L, Grove M, McWilliams M, Sobolev SV, Jiang W, Wu Z (2000) Hot and dry deep crustal xenoliths from Tibet. Science 287:2463–2466CrossRefGoogle Scholar
  20. Hansmann W, Oberli F (1991) Zircon inheritance in an igneous rock suite from the southern Adamello batholith (Italian Alps). Contrib Mieral Petrol 107:501–518CrossRefGoogle Scholar
  21. Hofmann AW (1986) Nb in Hawaiian magmas: constraints on source composition and evolution. Chem Geol 57:1–17CrossRefGoogle Scholar
  22. Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth Planet Sci Lett 33:33–45CrossRefGoogle Scholar
  23. Hollings P, Kerrich R (2000) An Archean arc basalt-Nb-enriched basalt-adakite association: the 2.7 Ga confederation assemblage of the Birch-Uchi greenstone belt, Superior Province. Contrib Mineral Petrol 139:208–226CrossRefGoogle Scholar
  24. Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet Sci Lett 220:139–155CrossRefGoogle Scholar
  25. Hsü KJ, Pan GT, Sengör AMC (1995) Tectonic evolution of the Tibetan Plateau: a working hypothesis based on the Archipelago model of orogenesis. Int Geol Rev 37:473–508CrossRefGoogle Scholar
  26. Hu SH, Chen AF, Lin SL, Yuan HL, Gao S (2000) Study of ICP-MS analysis of 40 trace and ultratrace elements in geological samples. Earth Sci 25:286–290 (in Chinese with English abstract)Google Scholar
  27. Jian P, Liu DY, Sun SM (2003) SHRIMP dating of carboniferous Jinshajiang ophiolite in western Yunnan and Sichuan: geochronological constraints on the evolution of the Paleo-Tethys oceanic crust. Acta Geol Sinica 77:217–277 (in Chinese with English abstract)Google Scholar
  28. Kapp P, Yin A, Manning CE, Murphy M, Harrison TM, Spurlin M, Ding L, Deng XG, Wu CM (2000) Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet. Geology 28:19–22CrossRefGoogle Scholar
  29. Kapp P, Yin A, Manning CE, Harrison TM, Taylor MH, Ding L (2003) Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics 22:1043. doi: 10.1029/2002TC001383 CrossRefGoogle Scholar
  30. Kay RW, Kay SM (1993) Delamination and delamination magmatism. Tectonophys 219:177–189CrossRefGoogle Scholar
  31. Kay SM, Ramos VA, Marquez M (1993) Evidence in Cerro Pampa volcanic rocks of slab melting prior to ridge trench collision in southern South America. J Geol 101:703–714CrossRefGoogle Scholar
  32. Kepezhinskas PK, Defant MJ, Drummond MS (1996) Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochem Cosmochim Acta 60:1217–1229CrossRefGoogle Scholar
  33. Kepezhinskas PK, McDermott F, Defant MJ, Hochstaedter FG, Drummond MS, Hawkesworth CJ, Koloskov A, Maury RC, Bellon H (1997) Trace element and Sr–Nd–Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochim Cosmochim Acta 61:577–600CrossRefGoogle Scholar
  34. Keppler H (1996) Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380:237–240CrossRefGoogle Scholar
  35. Koppers AAP (2002) ArArCALC-software for 40Ar/39Ar age calculations. Comput Geosci 28(5):605–619CrossRefGoogle Scholar
  36. Leeder MR, Smith AB, Yin JX (1988) Sedimentology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud geotraverse. Philos Trans R Soc Lond A 327:107–143CrossRefGoogle Scholar
  37. Li C, Cheng LR, Hu K, Zengrong Y, Hong YR (1995) Study on the paleo-Tethys suture zone of Lungmu Co-Shuanghu, Tibet Geological Publishing House, Beijing, p 131Google Scholar
  38. Li XH, Li ZX, Zhou HW, Liu Y, Kinny PD (2002) U–Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of south China: implications for the initial rifting of Rodinia. Precambrian Res 113:135–154CrossRefGoogle Scholar
  39. Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429CrossRefGoogle Scholar
  40. Niu YL, Batiza R (1997) Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet Sci Lett 148:471–483CrossRefGoogle Scholar
  41. Pan GT, and Ding J (2004) The geological map (1:1, 500, 000) of the Tibetan Plateau and neighbouring area and its specification. Map Publishing House, Chengdu, pp 1–133 (in Chinese with English abstract)Google Scholar
  42. Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121:227–244CrossRefGoogle Scholar
  43. Pearce JA, Mei H (1988) Volcanic rocks of the 1985 Tibet geotraverse: Lhasa to Golmud. Philos Trans R Soc Lond A 327:169–201CrossRefGoogle Scholar
  44. Polat A, Kerrich R (2002) Nd-isotope systematics of ∼2.7 Ga adakites, magnesian andesites, and arc basalts, Superior Province: evidence for shallow crustal recycling at Archean subduction zones. Earth Planet Sci Lett 202:345–360CrossRefGoogle Scholar
  45. Puchtel IS, Haase KM, Hofmann AW, Chauvel C, Kulikov VS, Garbe-Schönberg CD, Nemchin AA (1997) Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere. Geochim Cosmochim Acta 61:1205–1222CrossRefGoogle Scholar
  46. Qiu HN (2006) Construction and development of new Ar–Ar laboratories in China: Insight from GV-5400 Ar–Ar laboratory in Guangzhou Insitute of Geochemistry, Chinese Academy of Sciences. Geochimica 35(2):133–140 (in Chinese with English abstract)Google Scholar
  47. Qiu HN, Jiang YD (2007) Sphalerite 40Ar/39Ar progressive crushing and stepwise heating techniques. Earth Planet Sci Lett 256:224–232CrossRefGoogle Scholar
  48. Qu X, Hou Z (2002) 40Ar/39Ar age of the Panyong pillow basalt: Implication for the evolution relationship between the Jinshajiang and Gaze-Litang suture zones. Geol Rev 48(Supp.):115–121 (In Chinese with English abstract)Google Scholar
  49. Rapp RP, Shimizu N, Norman MD, Applegate GS (1999) Reaction between slab-derived melts and peridotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chem Geol 160:335–356CrossRefGoogle Scholar
  50. Roger F, Arnaud N, Gilder S, Tapponnier P, Jolivet M, Brunel M, Malavieille J, Xu Z, Yang J (2003) Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics 22:1037.doi: 10.1029/2002TC001466 CrossRefGoogle Scholar
  51. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) The crust vol 3 Treatise on geochemistry (eds Holland HD, Turekian KK) [M]. Elsevier, Oxford, pp 1–64Google Scholar
  52. Sajona FG, Maury RC, Bellon H, Cotton J, Defant MJ, Pubellier M, Rangin C (1993) Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology 21:1007–1010CrossRefGoogle Scholar
  53. Sajona FG, Maury RC, Bellon H, Cotton J, Defant M (1996) High field strength element enrichment of Pliocene–Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). J Petrol 37:693–726CrossRefGoogle Scholar
  54. Sha JG (1998) Characteristics of stratigraphy and palaeontology of Hohxil, Qinghai: geographic significance. Acta Palaeontologica Sinica 37:85–95 (In Chinese with English abstract)Google Scholar
  55. Song XY, Zhou MF, Cao ZM, Robinson PT (2004) Late Permian rifting of the South China Craton caused by the Emeishan mantle plume? J Geol Soc Lond 161:773–781CrossRefGoogle Scholar
  56. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Implications for mantle composition and processes, magmatism in the ocean Basins. Geological Society, London, Special publication vol 42, pp 313–345Google Scholar
  57. Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G, Yang JS (2001) Oblique stepwise rise and growth of the Tibet plateau. Science 294:1671–1677CrossRefGoogle Scholar
  58. Turner S, Arnaud N, Liu J, Rogers N, Hawkesworth C, Harris N, Kelley S, van Calsteren P, Deng W (1996) Postcollision, shoshonitic volcanism on the Tibetan plateau: Implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71CrossRefGoogle Scholar
  59. Wang Q, McDermott F, Xu JF, Bellon H, Zhu YT (2005) Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33:465–468CrossRefGoogle Scholar
  60. Wang Q, Wyman DA, Zhao ZH, Xu JF, Bai ZH, Xiong XL, Dai TM, Li CF, Chu ZY (2007a) Petrogenesis of Carboniferous adakites and Nb-enriched arc basalts in the Alataw area, northern Tianshan Range (western China): Implication for Phanerozoic crustal growth of Central Asia Orogenic Belt. Chem Geol 236:42–64CrossRefGoogle Scholar
  61. Wang Q, Wyman DA, Xu JF, Jian P, Zhao ZH, Li CF, Xu W, Ma JL, He B (2007b) Early Cretaceous adakitic granites in the Northern Dabie complex, central China: implications for partial melting and delamination of thickened lower crust. Geochim Cosmochim Acta 71:2609–2636CrossRefGoogle Scholar
  62. Wijbrans JR, Pringle MS, Koppers AAP, Scheveers R (1995) Argon geochronology of small samples using the vulkaan argon laserprobe. Proc K Ned Akad Wet: Biol Chem Geol Phys Med Sci 98:185–218Google Scholar
  63. Wyman DA, Ayer JA, Devaney JR (2000) Niobium-enriched basalts from the Wabigoon subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone. Earth Planet Sci Lett 179:21–30CrossRefGoogle Scholar
  64. Xu JF, Castillo PR (2004) Geochemical and Nd–Pb isotopic characteristics of the Tethyan asthenosphere: implications for the origin of the Indian Ocean mantle domain. Tectonophys 393:9–27CrossRefGoogle Scholar
  65. Xu JF, Shinjio R, Defant MJ, Wang Q, Rapp RP (2002) Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 30:1111–1114CrossRefGoogle Scholar
  66. Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280CrossRefGoogle Scholar
  67. Yogodzinski GM, Volynets ON, Koloskov AV, Seliverstov NI (1994) Magnesian andesites and the subduction component in a strongly calcalkaline series at Piip Volcano, far western Aleutians. J Petrol 34:163–204Google Scholar
  68. Zhang KJ (2001) Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet: comment. Geology 29:90CrossRefGoogle Scholar
  69. Zhang YF, Zheng JK (1994) The geological outline on the Hoh Xil and its adjacent region. Seismological Press, Beijing, Pp 1–177 (in Chinese with English abstract)Google Scholar
  70. Zhang HF, Sun M, Zhou XH (2002) Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace elements and Sr–Nd–Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol 144:241–253CrossRefGoogle Scholar
  71. Zhang KJ, Zhang YX, Li B, Zhu YT, Wei RZ (2006a) The blueschist-bearing Qiangtang metamorphic belt (northern Tibet, China) as an in situ suture zone: evidence from geochemical comparison with the Jinsa suture. Geology 34:493–496CrossRefGoogle Scholar
  72. Zhang KJ, Cai JX, Zhang YX, Zhao TP (2006b) Eclogites from central Qiangtang, northern Tibet (China) and tectonic implications. Earth Planet Sci Lett 245:722–729CrossRefGoogle Scholar
  73. Zhou MF, Yan DP, Wang CL, Qi L, Kennedy A (2006) Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth Planet Sci Lett 248:286–300CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Qiang Wang
    • 1
  • Derek A. Wyman
    • 2
  • Jifeng Xu
    • 1
  • Yusheng Wan
    • 3
  • Chaofeng Li
    • 4
  • Feng Zi
    • 1
  • Ziqi Jiang
    • 1
  • Huaning Qiu
    • 1
  • Zhuyin Chu
    • 4
  • Zhenhua Zhao
    • 1
  • Yanhui Dong
    • 1
  1. 1.Key Laboratory of Isotope Geochronology and Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.School of Geosciences, Division of Geology and GeophysicsThe University of SydneySydneyAustralia
  3. 3.Geological InstituteChinese Academy of Geological SciencesBeijingPeople’s Republic of China
  4. 4.Institute of Geology and GeophysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations