Contributions to Mineralogy and Petrology

, Volume 155, Issue 4, pp 433–456 | Cite as

Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions

  • Seth J. Sadofsky
  • Maxim Portnyagin
  • Kaj Hoernle
  • Paul van den Bogaard
Original Paper


Compositions of melt inclusions in olivine (Fo90-64) from 11 localities in Guatemala, Nicaragua and Cost Rica along the Central American Volcanic Arc are used to constrain combined systematics of major and trace elements and volatile components (H2O, S, Cl, F) in parental melts and to estimate volcanic fluxes of volatile elements. The melt inclusions cover the entire range of compositions reported for whole rocks from Central America. They point to large heterogeneity of magma sources on local and regional scales, related to variable contributions of diverse crustal (from the subducting and overriding plates) and mantle (from the wedge and incoming plate) components involved in magma genesis. Water in parental melts correlates inversely with Ti, Y and Na and positively with Ba/La and B/La (with the exception of Irazú Volcano), which indicates mantle melting fluxed by Ba-, B- and H2O-rich, possibly, serpentinite-derived fluid beneath most parts of the arc. Different components with melt-like characteristics (high LREE, La/Nb and probably also Cl, S and F and low Ba/La) control the geochemical peculiarities of Guatemalan and Costa Rican magmas. The composition of parental magmas together with published data on volcanic volumes and total SO2 flux from satellite measurements are used to constrain fluxes of volatile components and to estimate total magmatic flux in Central America. We found that volcanic flux accounts for only 13% of total magmatic and volatile fluxes. The remaining 87% of magmas remained in the lithosphere to form cumulates (∼39%) and intrusives (∼48%). The intrusive fraction of magmatic flux may be significantly larger beneath Nicaragua compared to Costa Rica. Interestingly, total fluxes of magmas and volatiles in Central America are quite similar to the global average estimates.


Olivine Mantle Wedge Parental Magma Volcanic Front Trace Element Ratio 



We would like to thank W. Strauch, G. Rocha, G. Alvarado, C. Ramirez, O. Mattius and G. Soto for field assistance, M. Thöner and S. Simakin for analytical assistance, and J. Phipps Morgan, L. Rüpke, T. Hansteen, M. Carr, K. Garofolo, A. Freundt, S. Kutterolf, H. Whermann and W. Perez for stimulating discussions on Central American arc magmatism. We are grateful to D. Hilton, L. Patino, P. Wallace, T. Plank and M. Carr for providing constructive and helpful comments on earlier versions of this manuscript. This work was funded by the Deutsche Forschungsgemeinschaft through Sonderforschungsbereich 574 “Volatiles and Fluids in Subduction Zones” to the University of Kiel and the Russian Foundation for Basic Research (grant 06-05-64873-а to M.P.). This is contribution number 76 to SFB 574.

Supplementary material


  1. Abers GA, Plank T, Hacker BR (2003) The wet Nicaraguan slab. Geophys Res Lett 30(2):1098–1101CrossRefGoogle Scholar
  2. Abratis M, Wörner G (2001) Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Carribean realm. Geology 29(2):127–130CrossRefGoogle Scholar
  3. Aubouin J, Azema J, Carfantan J-C, Demant A, Rangin C, Tardy M, Tournon J (1982) The Middle-America Trench in the geologic framework of Central America. In: Initial reports of the ocean drilling program, vol 67, pp 747–755Google Scholar
  4. Benjamin ER, Plank T, Wade JA, Kelley KA, Hauri EH, Alvarado GE (2007) High water contents in basaltic magmas from Irazú volcano, Costa Rica. J Volcanol Geotherm Res (in press) Google Scholar
  5. Carr MJ, Feigenson MD, Bennett EA (1990) Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contrib Mineral Petrol 105:369–380CrossRefGoogle Scholar
  6. Carr MJ, Feigenson MD, Patino LC, Walker JA (2003) Volcanism and geochemistry in Central America: progress and problems. In: Eiler J (ed) Inside the subduction factory, vol.138, pp 153–174Google Scholar
  7. Carr MJ, Saginor I, Alvarado G, Bolge LL, Lindsay FN, Turrin B, Feigenson MD, Swisher III CC (2007) Element Fluxes from the Volcanic Front of Nicaragua and Costa Rica. Geochem Geophys Geosyst 8:Q06001. doi: 10.1029/2006GC001396 CrossRefGoogle Scholar
  8. Carroll MR, Rutherford MJ (1988) Sulfur speciation in hydrous experimental glasses of varying oxidation states: results from measured wavelength shifts of sulfur X-ray. Am Mineral 73:845–849Google Scholar
  9. Chaussidon M, Jambon A (1994) Boron content and isotopic composition of oceanic basalts: geochemical and cosmochemical implications. Earth Planet Sci Lett 121:277–291CrossRefGoogle Scholar
  10. Crisp JA (1984) Rates of magma emplacement and volcanic output. J Volcanol Geotherm Res 20:177–211CrossRefGoogle Scholar
  11. Danyushevsky L, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24CrossRefGoogle Scholar
  12. Duggen S, Portnyagin M, Baker J, Ulfbeck D, Hoernle K, Garbe-Schönberg D, Grassineau N (2007) Drastic shift in lava geochemistry in the volcanic-front to rear-arc region of the Southern Kamchatkan subduction zone: evidence for the transition from slab surface dehydration to sediment melting. Geochim Cosmochim Acta 71:452–480CrossRefGoogle Scholar
  13. Eiler JM, Carr MJ, Reagan M, Stolper E (2005) Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst 6:Q07007. doi: 07010.01029/02004GC000804 CrossRefGoogle Scholar
  14. Feigenson MD, Carr MJ (1993) The source of Central American lavas: inferences from geochemical inverse modeling. Contrib Mineral Petrol 113(2):226–235CrossRefGoogle Scholar
  15. Feigenson MD, Carr MJ, Maharaj SV, Juliano S, Bolge LL (2004) Lead isotope composition of Central American volcanoes: Influence of the Galapagos plume. Geochem Geophys Geosyst 5:Q06001. doi: 10.1029/2003GC000621 CrossRefGoogle Scholar
  16. Frische M, Garofalo K, Hansteen TH, Borchers R (2006) Fluxes and origin of halogenated organic trace gases from Momotombo volcano (Nicaragua). Geochem Geophys Geosyst 7:Q05020. doi: 10.1029/2005GC001162 CrossRefGoogle Scholar
  17. Garrido CJ, Lopez Sanchez-Vizcaýno V, Go´mez-Pugnaire MT, Trommsdorff V, Alard O, Bodinier J-L, Godard M (2005) Enrichment of HFSE in chlorite-harzburgite produced by high-pressure dehydration of antigorite-serpentinite: implications for subduction magmatism. Geochem Geophys Geosyst 6:Q01J15. doi: 10.1029/2004GC000791 CrossRefGoogle Scholar
  18. Goss AR, Kay SM (2006) Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: evidence for forearc subduction erosion?. Geochem Geophys Geosyst 7:Q05016. doi: 10.1029/2005GC001163 CrossRefGoogle Scholar
  19. Harris DM, Anderson AT (1984) Volatiles H2O, CO2 and Cl in a subduction related basalt. Contrib Mineral Petrol 87:120–128CrossRefGoogle Scholar
  20. Hilton DR, Fischer TP, Marty B (2002) Noble gases and volatile recycling in subduction zones. In: Porcelli D, Ballentine C, Weiler R (eds) Noble gases in geochemistry and cosmochemistry, reviews in mineralogy and geochemistry, vol 47. Mineralogical Society of America, Washington, DC, pp 319–370Google Scholar
  21. Hoernle K, Werner R, Phipps Morgan J, Garbe-Schonberg D, Bryce J, Mrazek J (2000) Existence of complex spatial zonation in the Galápagos plume. Geology 28(5):435–438CrossRefGoogle Scholar
  22. Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust and oceanic crust. Earth Planet Sci Lett 90:297–314CrossRefGoogle Scholar
  23. Hofmann AW (2003) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 61–101Google Scholar
  24. Ionov DA, Hofmann AW (1995) Nb-Ta-Rich mantle amphiboles and micas—implications for subduction-related metasomatic trace-element fractionations. Earth Planet Sci Lett 131(3–4):341–356CrossRefGoogle Scholar
  25. Jarosewich EJ, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4:43–47CrossRefGoogle Scholar
  26. Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosyst 4(5):8905 doi: 10.1029/2002GC000392 CrossRefGoogle Scholar
  27. Katz RF, Spiegelman M, Lagmuir CH (2003) A new parameterization of hydrous mantle melting. Geochem Geophys Geosyst 4(9):1073. doi: 1010.1029/2002GC000433 CrossRefGoogle Scholar
  28. Kelley K, Plank T, Grove TL, Stolper EM, Newman S, Hauri E (2006) Mantle melting as a function of water content beneath back-arc basins. J Geophys Res 111:B09208. doi: 10.1029/2005JB003732 CrossRefGoogle Scholar
  29. Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. In: Phipps Morgan J, Blackman DK, Sinton JM (eds) Mantle flow and melt generation at mid-ocean ridges, vol 71. AGU, Washington, DC, pp 183–280Google Scholar
  30. Leeman WP, Carr MJ, Morris JD (1994) Boron geochemistry of the Central American Volcanic Arc: constraints on the genesis of subduction-related magmas. Geochim Cosmochim Acta 58(1):149–168CrossRefGoogle Scholar
  31. Lundstrom CC, Hoernle K, Gill J (2003) U-series disequilibria in volcanic rocks from the Canary Islands: plume versus lithospheric melting. Geochim Cosmochim Acta 67(21):4153–4177CrossRefGoogle Scholar
  32. McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the lithosphere. J Petrol 29:625–679Google Scholar
  33. Morris JD, Leeman WP, Tera F (1990) The subducted component in island arc lavas: constraints from Be isotopes and B-Be systematics. Nature 344:31–36CrossRefGoogle Scholar
  34. Patino LC, Carr MJ, Feigenson MD (2000) Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib Mineral Petrol 138:265–283CrossRefGoogle Scholar
  35. Plank T, Langmuir CH (1998) The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem Geol 143:325–394CrossRefGoogle Scholar
  36. Portnyagin MV, Simakin SG, Sobolev AV (2002) Fluorine in primitive magmas of the Troodos Ophiolite Complex, Cyprus: analytical methods and main results. Geochem Int 40(7):625–632Google Scholar
  37. Portnyagin MV, Hoernle K, Plechov PY, Mironov NL, Khubunaya SA (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255(1–2):53–59CrossRefGoogle Scholar
  38. Protti M, Gündel F, McNally K (1995) Correlation between the age of the subducting Cocos plate and the geometry of the Wadati-Benioff zone under Nicaragua and Costa Rica. In: Mann P (ed) Geologic and tectonic development of the Caribbean plate boundary in southern Central America, vol 295, pp 309–326Google Scholar
  39. Ranero C, Phipps Morgan J, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373CrossRefGoogle Scholar
  40. Roggensack K (2001a) Sizing up crystals and their melt inclusions: a new approach to crystallization studies. Earth Planet Sci Lett 187(1–2):221–237CrossRefGoogle Scholar
  41. Roggensack K (2001b) Unraveling the 1974 eruption of Fuego volcano (Guatemala) with small crystals and their young melt inclusions. Geology 29(10):911–914CrossRefGoogle Scholar
  42. Roggensack K, Hervig RL, McKnight SB, Williams SN (1997) Explosive basalic volcanism from Cerro Negro volcano: influence of volatiles on eruptive style. Science 277(9):1639–1642CrossRefGoogle Scholar
  43. Rüpke L, Phipps Morgan J, Hort M, Connolly JAD (2002) Are the regional variations in Central American arc lavas due to differing basaltic versus peridotitic slab sources of fluids? Geology 30(11):1035–1038CrossRefGoogle Scholar
  44. Rüpke LH, Phipps Morgan J, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223(1–2):17–34CrossRefGoogle Scholar
  45. Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochem Geophys Geosyst 5(5):Q05004. doi: 05010.01029/02003GC000597 CrossRefGoogle Scholar
  46. Sisson TW, Layne GD (1993) H2O in basalt and basaltic andesite glass inclusions from 4 subduction-related volcanoes. Earth Planet Sci Lett 117(3–4):619–635CrossRefGoogle Scholar
  47. Sobolev AV, Chaussidon M (1996) H2O concentrations in primary melts from island arcs and mid-ocean ridges: implications for H2O storage and recycling in the mantle. Earth Planet Sci Lett 137:45–55CrossRefGoogle Scholar
  48. Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417CrossRefGoogle Scholar
  49. Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana Trough magmas. Earth Planet Sci Lett 121(3–4):293–325CrossRefGoogle Scholar
  50. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society Special Publication, London, pp 313–345Google Scholar
  51. Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7:Q05017. doi: 10.1029/2005GC001045 CrossRefGoogle Scholar
  52. Wade JA, Plank T, Melson WG, Soto GJ, Hauri EH (2006) The volatile content of magmas from Arenal volcano, Costa Rica. J Volcanol Geotherm Res 157(1–3):94–120CrossRefGoogle Scholar
  53. Walker JA, Carr MJ, Feigenson MD, Kalamarides RI (1990) The petrogenetic significance of interstratified high- and low-Ti basalts in Central Nicaragua. J Petrol 31(5):1141–1164Google Scholar
  54. Walker JA, Roggensack K, Patino LC, Cameron BI, Matias O (2003) The water and trace element contents of melt inclusions across an active subduction zone. Contrib Mineral Petrol 146:62–77CrossRefGoogle Scholar
  55. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240CrossRefGoogle Scholar
  56. Werner R, Hoernle K, van den Bogaard P, Ranero C, von Huene R, Korich D (1999) Drowned 14-m.y.-old Galápagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology 27(6):499–502CrossRefGoogle Scholar
  57. Werner R, Hoernle K, Barkckhausen U, Hauff F (2003) Geodynamic evolution of the Galápagos hot spot system (Central East Pacific) over the past 20 m.y.: Constraints from morphology, geochemistry, and magnetic anomalies. Geochem Geophys Geosyst 4(12):1108. doi: 10.1029/2003GC000576 CrossRefGoogle Scholar
  58. Yaxley GM, Green DH (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Scweiz Miner Petrogr Mitt 78:243–255Google Scholar
  59. Zimmer MM, Fischer TP, Hilton DR, Alvarado GE, Sharp ZD, Walker JA (2004) Nitrogen systematics and gas fluxes of subduction zones: Insights from Costa Rica arc volatiles. Geochem. Geophys. Geosyst. 5:Q05J11 doi: 10.1029/2003GC000651 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Seth J. Sadofsky
    • 1
  • Maxim Portnyagin
    • 2
    • 3
  • Kaj Hoernle
    • 1
    • 2
  • Paul van den Bogaard
    • 1
    • 2
  1. 1.SFB 574University of KielKielGermany
  2. 2.Leibniz Institute for Marine Sciences (IFM-GEOMAR)KielGermany
  3. 3.Vernadsky InstituteMoscowRussia

Personalised recommendations