Advertisement

Contributions to Mineralogy and Petrology

, Volume 155, Issue 3, pp 295–312 | Cite as

Trace element chemistry and U–Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps)

  • M.-A. Kaczmarek
  • O. Müntener
  • D. Rubatto
Original Paper

Abstract

The U–Pb ages and the trace element content of zircon U–Pb along with major and trace element whole rock data on gabbroic dikes from the Lanzo lherzolitic massif, N-Italy, have been determined to constrain crustal accretion in ocean–continent transition zones. Three Fe–Ti gabbros were dated from the central and the southern part of the massif providing middle Jurassic ages of 161 ± 2, 158 ± 2 and 163 ± 1 Ma, which argue for magmatic activity over few millions of years. Zircon crystals are characterized by high but variable Th/U ratios, rare earth element patterns enriched in heavy rare earths, pronounced positive Ce and negative Eu-anomalies consistent with crystallization after substantial plagioclase fractionation. The zircon trace element composition coupled with whole rock chemistry was used to reconstruct the crystallization history of the gabbros. A number of gabbros crystallized in situ, and zircon precipitated from trapped, intercumulus liquid, while other gabbros represent residual liquids that were extracted from a cumulus pile and crystallized along syn-magmatic shear zones. We propose a model in which the emplacement mechanism of gabbroic rocks in ocean–continent transition zones evolves from in situ crystallization to stratified crystallization with efficient extraction of residual liquid along syn-magmatic shear zones. Such an evolution of the crystallization history is probably related to the thermal evolution of the underlying mantle lithosphere.

Keywords

Zircon Oxyde gabbros Trace element geochemistry Peridotite Lanzo massif Piemont–Ligurian ocean SHRIMP U–Pb dating 

Notes

Acknowledgments

We thank V. Serneels for helping with the XRF analyses and A. Ulianov for LA-ICP-MS analyses of whole rock glasses. Comments from two reviewers improved the final version of the manuscript. The Electron Microscopy Unit at the Australian National University provided for access to the CL facility. This research was financially supported by the Swiss National Foundation (Project 21–66923.01 and 200020-104636/1).

Supplementary material

410_2007_243_MOESM1_ESM.xls (31 kb)
eTable 1: XRF major and trace element analyses of basalts and gabbros. Basalts (L132a, La2005-7), rodiginte (L124a), ferro–gabbro with zircon (L165, A71b, A91a), amphibole-gabbro (La2005-6), olivine-gabbro (L13g, Mu6, A16), meta-troctolite (L44a) and leuco-troctolite (La2002-4), and plagiogranite (V16). For Zr analyzed by XRF, values below 10ppm are considered unreliable. In Fig. 4b, we used data from laser ablation ICP-MS (Zr*) (XLS 31 kb)
410_2007_243_MOESM2_ESM.xls (25 kb)
eTable 2: Trace element composition of basalts and gabbros measurements by LA-ICP-MS. Abbreviations as in eTable 1 (XLS 25 kb)
410_2007_243_MOESM3_ESM.xls (46 kb)
eTable 3:Trace element compositions of zircons measured by LA-ICP-MS from ferro–gabbro samples (L165, A71 and A91) (XLS 45 kb)

References

  1. Aldiss DT (1981) Plagiogranites from the ocean crust and ophiolites. Nature 289:577–578CrossRefGoogle Scholar
  2. Beccaluva L, Macciotta G, Piccardo GB, Zeda O (1984) Petrology of lherzolitic rocks from the northern Apennine ophiolites. Lithos 17:299–316CrossRefGoogle Scholar
  3. Bill M, Bussy F, Cosca M, Masson H, Hunziker JC (1997) High-precision U–Pb and 40Ar/39Ar dating of an Alpine ophiolite (Gets nappe, French Alps). Eclogae Geol Helv 90:43–54Google Scholar
  4. Bill M, Nagler TF, Masson H (2000) Major, minor, trace element, Sm–Nd and Sr isotope compositions of mafic rocks from the earliest oceanic crust of the Alpine Tethys. Schweiz Miner Petrog Mitt 80:131–145Google Scholar
  5. Black LP, Kamo SL, Williams I, Mundil R, Davis DW, Korsch RJ, Foudoulis C (2003) The application of SHRIMP to phanerozoic geochronology; a critical appraisal of four zircon standards. Chem Geol 200:171–188CrossRefGoogle Scholar
  6. Bodinier JL (1988) Geochemistry and petrogenesis of the Lanzo peridotite body, western Alps. Tectonophysics 149:67–88CrossRefGoogle Scholar
  7. Bodinier JL, Guirard M, Dupuy C, Dostal J (1986) Geochemistry of basic dikes in the Lanzo massif (Western Alps): petrogenetic and geodynamic implications. Tectonophysics 128:77–95CrossRefGoogle Scholar
  8. Borsi L, Schärer U, Gaggero L, Crispini L (1996) Age, origin and geodynamic significance of plagiogranites in lherzolites and gabbros of the Piedmont-Liguria ocean basin. Earth Planet Sci Lett 140:227–241CrossRefGoogle Scholar
  9. Boudier F (1972) Relations lherzolites-gabbro-dunite dans le massif de Lanzo (Alpes Piémontaises): exemple de fusion partielle. In: Institut des PhD thesis, Université de Nantes, Nantes, p 106Google Scholar
  10. Boudier F (1978) Structure and petrology of the Lanzo peridotite massif (Piedmont Alps). Geol Soc Am Bull 89(10):1574–1591CrossRefGoogle Scholar
  11. Boudier F, Nicolas A (1972) Fusion partielle gabbroique dans la lherzolite de Lanzo (Alpes piemontaises). Schweiz Miner Petrog Mitt 52(1):39–56Google Scholar
  12. Bown J, White RS (1994) Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet Sci Lett 121:435–439CrossRefGoogle Scholar
  13. Compston W, Williams I, Meyer-Charles E (1984) U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass resolution ion microprobe. J Geophys Res 89:525–534Google Scholar
  14. Compston W, Williams I, Kirschvink JL, Zhang Z, Ma G (1992) Zircon U–Pb ages for the early Cambrian time-scale. J Geol Soc London 149(2):171–184Google Scholar
  15. Coogan LA, Hinton RW (2006) Do the trace element compositions of detrital zircons require Hadean continental crust? Geology 34(8):633–636CrossRefGoogle Scholar
  16. Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of Zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon, vol 53. Mineralogical Society of America and Geochemical Society, Washington, pp 469–500Google Scholar
  17. Costa S, Caby R (2001) Evolution of the Ligurian Tethys in the Western Alps: Sm/Nd and U/Pb geochronology and rare-earth element geochemistry of the Montgenevre ophiolite, France. Chem Geol 175:449–466CrossRefGoogle Scholar
  18. Dal Piaz GV (1988) Revised setting of the Piedmont zone in the northern Aosta valley, western Alps. Ofioliti 13(2–3):157–162Google Scholar
  19. Decandia FA, Elter P (1972) La “zona” ofiolitifera del Bracco nel settore compreso fra Levanto e la Val Graveglia (Appennino ligure). Mem Soc Geol It (11):503–530Google Scholar
  20. Desmurs L, Müntener O, Manatschal G (2002) Onset of magmatic accretion within a magma-poor rifted margin: a case study from the Platta ocean–continent transition, eastern Switzerland. Contrib Mineral Petrol 144:365–382CrossRefGoogle Scholar
  21. Dick HJB (1994) ODP looks through tectonic windows. JOI/USSAC Newsl 7(2):1–3Google Scholar
  22. Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu Y, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm HU, Yoshinobu A (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 drilling at the Southwest Indian ridge. In: Earth and planetary science letters, vol. 179, pp 31–51Google Scholar
  23. Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426(6965):405–412CrossRefGoogle Scholar
  24. Dietrich VJ (1969) Die Ophiolite des Oberhalbsteins (Graubünden) und das Ophiolithmaterial des ostschweizerischen Molasseablagerungen, ein petrographischer Vergleich, Lang, Bern, p 179Google Scholar
  25. Eggins SM, Rudnick RL, McDonough WF (1998) The composition of peridotites and their minerals; a laser-ablation ICP-MS study. Earth Planet Sci Lett 154(1–4):53–71CrossRefGoogle Scholar
  26. Froitzheim N, Schmid SM, Frey M (1996) Mesozoic paleogeography and timing of eclogite-facies metamorphism in the Alps: a working hypothesis. Eclogae Geol Helv 89(1):81–110Google Scholar
  27. Hiess J, Nutman A, Bennett V, Holden P (2006) Ti zircon thermometry applied to metamorphic and igneous systems. Geochim Cosmochim Acta 70(18):A250CrossRefGoogle Scholar
  28. Hinton RW, Upton BGJ (1991) The chemistry of zircon: variations within and between large crystals from syenite and alkali basalts xenoliths. Geochim Cosmochim Acta 55:3287–3302CrossRefGoogle Scholar
  29. Ionov DA, Savoyant L, Dupuy C (1992) Application of the ICP-MS technique to trace element analysis of peridotites and their minerals. Geostandard Newslett 16:311–315CrossRefGoogle Scholar
  30. Jochum KP, Seufert HM, Thirlwall MF (1990) Multi-element analysis of 15 international standard rocks by isotope-disolution spark source mass spectrometry. Geostandard Newslett 14:469–473CrossRefGoogle Scholar
  31. Kaczmarek M-A, Müntener O (2005) Exhumation of mantle lithosphere: field relations, and interaction processes between magmatism and deformation (Field trip to the northern Lanzo peridotite). Ofioliti 30(2):125–134Google Scholar
  32. Kaczmarek M-A, Müntener O (2007) Juxtaposition of melt impregnation and high temperature shear zone in the upper mantle (Lanzo peridotite, N-Italy) I: textures and minerals composition. J Petrol (submitted)Google Scholar
  33. Kienast JR, Pognante U (1988) Chloritoid-bearing assemblages in eclogitized metagabbros of the Lanzo peridotite body (western Italian Alps). Lithos 21(1):1–11CrossRefGoogle Scholar
  34. Koepke J, Feig ST, Snow J (2005) Hydrous partial melting within the lower oceanic crust. Terra Nova, 17:286–291Google Scholar
  35. Lagabrielle Y, Fudral S, Kienast J-R (1989) La couverture océanique des ultrabasites de Lanzo (Alpes Occidentales): arguments lithostratigraphiques et pétrologiques. Geodinamica Acta 4(1):43–55Google Scholar
  36. Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In: Phipps Morgan J, Blackman DK, Sinton JM (eds), Mantle flow and melt generation at mid-ocean ridges, Geophysical Monograph Series, vol. 71, AGU, Washington DC, pp. 183–280Google Scholar
  37. Lombardo B, Rubatto D, Castelli D (2002) Ion microprobe U–Pb dating of zircon from a Monviso metaplagiogranite: implications for the evolution of the Piedmont-Liguria Tethys in the western Alps. Ofioliti 27(2):109–117Google Scholar
  38. Ludwig KR (2003) Isoplot/Ex version 3.0. A geochronological toolkit for Microsoft Excel. Berkeley Geochronological Centre Special PublicationGoogle Scholar
  39. Müntener O, Piccardo GB (2003) Melt migration in ophiolitic peridotites: the message from Alpine–Apennine peridotites and implications for embryonic ocean basins. In: Dilek Y, Robinson PT (eds) Ophiolites in earth history, vol. 218. Geological Society of London, London, pp 69–89Google Scholar
  40. Müntener O, Manatschal G (2006) High degrees of melting recorded by spinel harzburgites of the Newfoundland margin: the role of inheritance and consequences for the evolution of the southern North Atlantic. Earth Planet Sci Lett 252:437–452CrossRefGoogle Scholar
  41. Müntener O, Piccardo GB, Polino R, Zanetti A (2005) Revisiting the Lanzo peridotite (NW-Italy): ‘asthenospherization’ of the ancient mantle lithosphere. Ofioliti 30(2):111–124Google Scholar
  42. Nicolas A (1989) Structures of ophiolites and dynamics of oceanic lithosphere, vol. 4. Kluwer, Dordrecht, p 367Google Scholar
  43. Ohnenstetter M, Ohnenstetter D, Vidal P, Cornichet J, Hermitte D, Mace J (1981) Crystallization and age of zircon from Corsican ophiolitic albitites: consequences for oceanic expansion in the Jurassic times. Earth Planet Sci Lett 54:397–408CrossRefGoogle Scholar
  44. Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1996) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard Newslett 21(1):115–144CrossRefGoogle Scholar
  45. Pelletier L (2003) Relation entre une croûte océanique et sa couverture sédimentaire. L’exemple du massif de Lanzo (Alpes piémontaises, Italie). In: Diplôme de Géologie BENEFRI, vol., NeuchâtelGoogle Scholar
  46. Pelletier L, Müntener O (2006) High pressure metamorphism of the Lanzo peridotite and its oceanic cover, and some consequences for the Sesia-Lanzo zone (northwestern Italian Alps). Lithos 90:111–130CrossRefGoogle Scholar
  47. Péron-Pinvidic G, Manatschal G, Minshull TA, Sawyer DS (2007) The tectono-sedimentary evolution of the deep Iberia-Newfoundland margins: evidence for a complex break-up history. Tectonics, 26Google Scholar
  48. Piccardo GB (1976) Petrologia del massiccio lherzolitico di Suvero (La Spezia). Ofioliti 1:279–317Google Scholar
  49. Piccardo GB, Müntener O, Zanetti A (2004) Alpine–Apennine ophiolitic peridotites: new concepts on their composition and evolution. Ofioliti 29(1):63–74Google Scholar
  50. Piccardo GB, Zanetti A, Müntener O (2007) Melt/peridotite interaction in the Lanzo South peridotite: field, textural and geochemical evidence. Lithos 94(1–4):181–209CrossRefGoogle Scholar
  51. Pognante U (1989) Lawsonite, blueschiste and eclogite formation in the southern Sesia zone (western Alps, Italy). Eur J Miner 1:89–104Google Scholar
  52. Pognante U, Rösli U, Toscani L (1985) Petrology of ultramafic and mafic rocks from the Lanzo peridotite body (western Alps). Lithos 18:201–214CrossRefGoogle Scholar
  53. Puschnig AR (1998) The Forno unit (Rhetic Alps): evolution of an ocean floor sequence from rifting to Alpine orogeny. PhD thesis, ETH ZürichGoogle Scholar
  54. Rampone E, Hofmann AW, Raczek I (1998) Isotopic contrast within the internal liguride ophiolite (N. Italy): the lack of a genetic mantle–crust link. Earth Planet Sci Lett 163:175–189CrossRefGoogle Scholar
  55. Reddy SM, Timms NE, Trimby PW, Kinny PD, Buchan C, Blake K (2006) Crystal-plastic deformation of zircon: a defect in the assumption of chemical robustness. Geol Soc Am 34(4):257–260Google Scholar
  56. Roeder PL, Emslie RF (1970) Olivine–liquid equilibrium. Contrib Mineral Petrol 29:275–289CrossRefGoogle Scholar
  57. Rubatto D, Gebauer D (2000) Use of cathodoluminescence for U–Pb zircon dating by ion microprobe; some examples from the Western Alps. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences, Springer, Berlin, pp 373–400Google Scholar
  58. Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): Implications for Zr and Hf budget in subduction zones. Geochim Cosmochim Acta 67(12):2173–2187CrossRefGoogle Scholar
  59. Rubatto D, Gebauer D, Fanning M (1998) Jurassic formation and Eocene subduction of the Zermatt-Saas-Fee ophiolites: implications for the geodynamic evolution of the Central and western Alps. Contrib Mineral Petrol 132:269–287CrossRefGoogle Scholar
  60. Sandrone R, Leardi L, Rossetti P, Compagnoni R (1986) P-T conditions for the eclogitic re-equilibration of the metaophiolotes from Val d’Ala di Lanzo (internal Piemontese zone, Western Alps). J Metamorph Geol 4:161–178CrossRefGoogle Scholar
  61. Schaltegger U, Desmurs L, Manatschal G, Müntener O, Meier M, Frank M, Bernoulli D (2002) The transition from rifting to sea-floor spreading within a magma-poor rifted margin: field and isotopic constraints. Terra Nova 14:156–162CrossRefGoogle Scholar
  62. Schärer U, Girardeau J, Cornen G, Boillot G (2000) 138–121 Ma asthenospheric magmatism prior to continental break-up in the north Atlantic and geodynamic implications. Earth Planet Sci Lett 181(4):555–572CrossRefGoogle Scholar
  63. Serri G (1980) Chemistry and petrology of gabbroic complexes from the northern Apennine ophiolites. In: Panayiotou A (ed) Ophiolites; proceedings, international ophiolite symposium, pp 296–313Google Scholar
  64. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221CrossRefGoogle Scholar
  65. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Sanders AD, Norry MJ (eds) Magmatism in the ocean basins, vol. 42. Special Publication Geological Society of London, London, pp 313–345Google Scholar
  66. Timms NE, Kinny PD, Reddy SM (2006) Enhanced diffusion of uranium and thorium linked to crystal plasticity in zircon. Geochem Trans 7(10)Google Scholar
  67. Tribuzio R, Thirlwall MF, Vannucci R (2004) Origin of the gabbro–peridotite association from the northern Apennine ophiolites (Italy). J Petrol 45(6):1109–1124CrossRefGoogle Scholar
  68. Tucholke BE, Sawyer DS, Sibuet JC (2007) Breakup of the Newfoundland-Iberia rift. In: Karner GD, Manatschal G, Pinheiro L (eds), Imaging, mapping and modeling continental lithosphere extension and breakup, geological society of London, Special Publication, vol. 282Google Scholar
  69. Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest earth. Science 308:841–844CrossRefGoogle Scholar
  70. Watson EB, Hayden LA, Wark DA, Cherniak DJ, Thomas JB, Manchester JE (2006) New crystallization thermometers for zircon, rutile and sphene; calibrations, diffusion considerations, and applications. Geol Soc Am 38(2):5Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of GeologyUniversity of NeuchâtelNeuchâtelSwitzerland
  2. 2.Institute of Mineralogy and GeochemistryUniversity of LausanneLausanneSwitzerland
  3. 3.Research School of Earth SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations