Contributions to Mineralogy and Petrology

, Volume 155, Issue 2, pp 247–256 | Cite as

Mantle melting in equilibrium with an Iron–Wüstite–Graphite buffered COH-fluid

Original Paper


Partial melting experiments on a San Carlos peridotite were done in a Walker type multi-anvil press at pressures from 5 to 12.5 GPa. Experiments were done in the presence of a COH-fluid and at oxygen fugacity controlled by the Fe–FeO buffer. Olivine, clinopyroxene, garnet and orthopyroxene are stable in all but the highest temperature 10 GPa experiments where olivine and garnet coexist, and the highest temperature 5 GPa experiments where olivine is the single crystalline phase. The solidus at 5 GPa was found to be at approximately 1,200°C and the liquidus was estimated to be at 1,325°C, which is ∼500°C lower than has been reported for dry melting of peridotite. The aluminum concentration of the melts decreases with increasing melt fraction and decreases also with increasing pressure. At 5 GPa the melts have a CaO/Al2O3-ratio of 0.85–1.0, which is similar to that of undepleted komatiites; major element concentrations are also identical to those of undepleted komatiites such as the Munro komatiites. At 10 and 12.5 GPa the partial melts have CaO/Al2O3-ratios above 1.5 and major element composition almost identical to aluminum depleted komatiites such as the Barberton komatiites. We therefore conclude that in the presence of a reducing COH-fluid both aluminum-depleted and -undepleted komatiites could have formed at temperatures much lower than generally accepted.


Melting Peridotite Komatiite COH-fluid 



We would like to thank Kurt Leinenweber for lab assistance and Karl Grönvold for microprobe help. Gudmundur Gudfinnson and Sigurdur Steinthorsson provided useful comments on an early draft of this work. We thank Steve Parman for a constructive and helpful review and an anonymous reviewer for his review


  1. Arndt NT, Jenner GA (1986) Crustally contaminated komatiites and basalts from Kambalda, Western-Australia. Chem Geol 56(3–4):229–255CrossRefGoogle Scholar
  2. Arndt N, Naldrett AJ, Pyke DR (1977) Genesis of Archean komatiites from Munro Township, Ontario: trace element evidence. Geology 5:590–594CrossRefGoogle Scholar
  3. Arndt N, Ginibre C, Chauvel C, Albarède F, Cheadle MCH, Jenner G, Lahaye Y (1998) Where komatiites wet? Geology 26(8):739–742CrossRefGoogle Scholar
  4. Asahara Y, Ohtani E (2001) Melting relations of the hydrous primitive mantle in the CMAS-H2O system at high pressures and temperatures, and implications for generation of komatiites. Phys Earth Planet Inter 125:31–44CrossRefGoogle Scholar
  5. Canil D (1992) Orthopyroxene stability along the peridotite solidus and the origin of cratonic lithosphere beneath southern Africa. Earth Planet Sci Lett 111:83–95CrossRefGoogle Scholar
  6. Echeverría LM (1982) Komatiites from Gorgona Island, Colombia. In: Arndt NT, Nisbet EG (eds) Komatiites. George Allen & Unwin, London, pp 199–209Google Scholar
  7. Frost DJ, Wood BJ (1997a) Experimental measurements of the fugacity of CO2 and graphite/diamond stability from 35 to 77 kbar at 925 to 1650 degrees C. Geochim Cosmochim Acta 61(8):1565–1574CrossRefGoogle Scholar
  8. Frost DJ, Wood BJ (1997b) Experimental measurements of the properties of H2O–CO2 mixtures at high pressures and temperatures. Geochim Cosmochim Acta 61(16):3301–3309CrossRefGoogle Scholar
  9. Frost DJ, Wood BJ (1998) The fugacity of carbon dioxide and the graphite/diamond CO equilibrium between 35 and 77 kbar at 925 to 1650 degrees C. Geochim Cosmochim Acta 62(4):725–725Google Scholar
  10. Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190CrossRefGoogle Scholar
  11. Grove TL, Parman SW (2004) Thermal evolution of the Earth as recorded by komatiites. Earth Planet Sci Lett 219(3–4):173–187CrossRefGoogle Scholar
  12. Grove TL, de Wit MJ, Dann JC (1996) Komatiites from the komati type section, Barberton, South Africa. In: de Wit MJ, Ashwal LD (eds) Greenstone Belts. Oxford Science Publications, Oxford, pp 422–437Google Scholar
  13. Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimerlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Petrol 46(8):1645–1659CrossRefGoogle Scholar
  14. Hanski EJ (1992) Petrology of the Pechenga ferropicrites and cogenetic Ni-bearing gabbro-wehrlite intrusions, Kola Peninsula, Russia. Bull Geol Surv Finl 367:192Google Scholar
  15. Herzberg C (1983) Solidus and liquidus temperatures and mineralogies for anhydrous garnet-lherzolite to 15 GPa. Phys Earth Planet Inter 32:193–202CrossRefGoogle Scholar
  16. Herzberg C (1992) Depth and degree of melting of komatiites. J Geophys Res 97(B4):4521–4540CrossRefGoogle Scholar
  17. Herzberg C (1995) Generation of plume magmas through time: an experimental perspective. Chem Geol 126:1–16CrossRefGoogle Scholar
  18. Herzberg C (2004) Geodynamic information in peridotite petrology. J Petrol 45(12):2507–2530CrossRefGoogle Scholar
  19. Herzberg C, Zhang J (1996) Melting experiments on anhydrous peridotite KLB-1: composition of magmas in the upper mantle transition zone. J Geophys Res 101:8271–8295CrossRefGoogle Scholar
  20. Jakobsson S, Holloway JR (1986) Crystal-liquid experiments in the presence of a C-O-H fluid buffered by graphite + iron + wüstite: experimental method and near-liquidus relations in basanite. J Volcanol Geotherm Res 29:265–291CrossRefGoogle Scholar
  21. Kawamoto T, Holloway JR (1997) Melting temperature and partial melt chemistry of H2O-saturated mantle peridotite to 11 gigapascals. Science 276:240–243CrossRefGoogle Scholar
  22. Kawamoto T, Hervig RL, Holloway JR (1996) Experimental evidence for a hydrous zone in the early Earth´s mantle. Earth Planet Sci Lett 142:587–592CrossRefGoogle Scholar
  23. Kinzler RJ (1997) Melting of mantle peridotite at pressures approacing the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874CrossRefGoogle Scholar
  24. Latourrette T, Holloway JR (1994) Oxygen fugacity of the diamond plus C–O fluid assemblage and Co2 fugacity at 8-Gpa. Earth Planet Sci Lett 128(3–4):439–451CrossRefGoogle Scholar
  25. Nesbitt RW, Sun SS (1976) Geochemistry of Archean spinifex textured peridotites and magnesian and low magnesian tholeiites. Earth Planet Sci Lett 31:433–453CrossRefGoogle Scholar
  26. Nesbitt RW, Sun SS, Purvis AC (1979) Komatiites: geochemistry and genesis. Can Mineral 17:165–186Google Scholar
  27. Nisbet EG, Bickle MJ, Martin A (1977) Mafic and ultramafic lavas of Belingwe Greenstone Belt, Rhodesia. J Petrol 18(4):521–566Google Scholar
  28. Nisbet EG, Cheadle M, Arndt NT, Bickle MJ (1993) Constraining the potential temperature of the Archean mantle: a review of the evidence from komatiites. Lithos 30:291–307CrossRefGoogle Scholar
  29. Parman SW, Dann JC, Grove TL, deWit MJ (1997) Emplacement conditions of komatiite magmas from the 3.49 Ga Komati formation, Barberton Greenstone belt, South Africa. Earth Planet Sci Lett 150(3–4):303–323CrossRefGoogle Scholar
  30. Parman SW, Grove TL, Dann JC, deWit MJ (2004) A subduction origin for komatiites and cratonic lithospheric mantle. South Af J Geol 107(1–2):107–118CrossRefGoogle Scholar
  31. Shimizu K, Komiya T, Shimizu N, Maruyama S (2001) Cr-spinel, an excellent micro-container for retaining primitive melts—implications for a hydrous plume origin for komatiites. Earth Planet Sci Lett 189(3–4):177–188CrossRefGoogle Scholar
  32. Stacey FD, Loper DE (1988) Thermal history of the earth: a corollary concerning non-linear mantle rheology. Phys Earth Planet Inter 53:167–174CrossRefGoogle Scholar
  33. Stone WE, Larson MS, Lesher CM, Deloule E (1997) Evidence for hydrous high-MgO melts in the Precambrian. Geology 25(2):143–146CrossRefGoogle Scholar
  34. Takahashi E (1986) Melting of a dry peridotite KLB-1 up to 14 GPa: implications on the origin of peridotitic upper mantle. J Geophys Res 91(B9):9367–9382CrossRefGoogle Scholar
  35. Takahashi E, Kushiro I (1983) Melting of a dry peridotite at high pressures and basalt magma genesis. Am Mineral 68:859–879Google Scholar
  36. Takahashi E, Scarfe CM (1985) Melting of peridotite to 14 GPa and the genesis of komatiite. Nature 315(6020):566–568CrossRefGoogle Scholar
  37. Takahashi E, Shimazaki T, Tsuzaki Y, Yoshida H (1993) Melting study of a peridotite KLB-1 to 6.5 GPa, and the origin of basaltic magmas. Philos Trans R Soc Lond 342:105–120CrossRefGoogle Scholar
  38. Walker RJ, Echeverría LM, Shirey SB, Horan MF (1991) Re–Os isotopic constraints on the origin of volcanic rocks, Gorgona Island, Colombia: Os isotopic evidence for ancient heterogeneities in the mantle. Contrib Mineral Petrol 107(2):150–162CrossRefGoogle Scholar
  39. Walter MJ (1998) Melting of garnet peridotie and the origin of komatiite and depleted lithosphere. J Petrol 39(1):29–60CrossRefGoogle Scholar
  40. Withers AC, Kohn SC, Brooker RA, Wood BJ (2000) A new method for determining the P-V-T properties of high-density H2O using NMR: results at 1.4–4.0 GPa and 700–1100 degrees C. Geochim Cosmochim Acta 64(6):1051–1057CrossRefGoogle Scholar
  41. Yoder HS (1967) Generation of Basaltic Magma. National Academy of Sciences, Washington, p 264Google Scholar
  42. Zhang J, Herzberg C (1994) Melting experiments on anhydrous peridotite KLB-1 from 5.0 GPa to 22.5 GPa. J Geophys Res 99(B9):17729–17742CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Earth SciencesUniversity of IcelandReykjavikIceland
  2. 2.School of Earth and Space Exploration and Department of Chemistry and BiochemistryArizona State UniversityTempeUSA

Personalised recommendations