Contributions to Mineralogy and Petrology

, Volume 155, Issue 1, pp 111–121 | Cite as

Low-pressure, water-assisted anatexis of basic dykes in a contact metamorphic aureole, Fuerteventura (Canary Islands): oxygen isotope evidence for a meteoric fluid origin

  • M. I. HollowayEmail author
  • F. Bussy
  • T. W. Vennemann
Original Paper


Migmatites produced by low-pressure anatexis of basic dykes are found in a contact metamorphic aureole around a pyroxenite–gabbro intrusion (PX2), on Fuerteventura. Dykes outside and inside the aureole record interaction with meteoric water, with low or negative δ18O whole-rock values (+0.2 to −3.4‰), decreasing towards the contact. Recrystallised plagioclase, diopside, biotite and oxides, from within the aureole, show a similar evolution with lowest δ18O values (−2.8, −4.2, −4.4 and −7.6‰, respectively) in the migmatite zone, close to the intrusion. Relict clinopyroxene phenocrysts preserved in all dykes, retain typically magmatic δ18O values up to the anatectic zone, where the values are lower and more heterogeneous. Low δ18O values, decreasing towards the intrusion, can be ascribed to the advection of meteoric water during magma emplacement, with increasing fluid/rock ratios (higher dyke intensities towards the intrusion acting as fluid-pathways) and higher temperatures promoting increasing exchange during recrystallisation.


Basic dykes Contact aureole Meteoric water Oxygen isotopes Partial melting 



We would like to thank Lukas Baumgartner for helpful discussions, and reviewers (Luigi Dalai and an anonymous reviewer) for their useful comments. Many thanks also to Jean-Claude Lavanchy (CAM, University of Lausanne) for the whole-rock XRF analyses, Sébastien Pilet and Alexey Ulianov for their help on the LA-ICP-MS, Benita Putlitz for her help with the CO2 laser-line in the stable isotope laboratory, and the Cabildo Insular de Fuerteventura for their permission to sample in the studied area. This research was supported by the Swiss National Science Foundation (project no. 200021-100493 and 200020-108033).

Supplementary material


  1. Balogh K, Ahijado A, Casillas R, Fernández C (1999) Contributions to the chronology of the Basal Complex of Fuerteventura, Canary Islands. J Volcanol Geoth Res 90:81–101CrossRefGoogle Scholar
  2. Banda E, Danobeitia JJ, Surinach E, Ansorge J (1981) Features of crustal structure under the Canary Islands. Earth Planet Sci Lett 55(1):11–24CrossRefGoogle Scholar
  3. Baumgartner LP, Valley JW (2001) Stable isotope transport and contact metamorphic fluid flow. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Rev Mineral Geochem 43:415–467Google Scholar
  4. Bédard JH (1991) Cumulate recycling and crustal evolution in the Bay of Islands ophiolite. J Geol 99:225–249CrossRefGoogle Scholar
  5. Brandriss ME, Bird DK, O’Neil JR (1992) Dependence of hydrothermal alteration on rock texture and microporosity in mafic crystalline rocks. In: Kharaka YK, Maest AS (eds) Proceedings of the 7th international symposium on water–rock interaction, vol 2. Moderate and high temperature environments, pp 1477–1480. International Association of Geochemistry and Cosmochemistry and Alberta Research Council, Sub-Group on Water–Rock Interaction, Edmonton, AB, InternationalGoogle Scholar
  6. Brandriss ME, Nevle RJ, Bird DK, O’Neill JR (1995) Imprint of meteoric water on the stable isotope compositions of igneous and secondary minerals, Kap Edvard Holm Complex, East Greenland. Contrib Mineral Petrol 121:74–86CrossRefGoogle Scholar
  7. Brandriss ME, Bird DK, O’Neill JR, Cullers RL (1996) Dehydration, partial melting, and assimilation of metabasaltic xenoliths in gabbros of the Kap Edvard Holm Complex, East Greenland. Am J Sci 296:333–393CrossRefGoogle Scholar
  8. Cantagrel JM, Fúster JM, Pin C, Renaud U, Ibarrola E (1993) Age Miocène inférieur des carbonatites de Fuerteventura (23 Ma: U–Pb zircon) et le magmatisme précoce d’une île océanique (îles Canaries). C R Acad Sci II 316:1147–1153Google Scholar
  9. Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Rev Mineral Geochem 43:1–81Google Scholar
  10. Coello J, Cantagrel JM, Hernán F, Fúster JM, Ibarrola E, Ancochea E, Casquet C, Jamond C, Díaz de Téran JR, Cendrero A (1992) Evolution of the eastern volcanic ridge of the Canary Islands based on new K−Ar data. J Volcanol Geoth Res 53(1–4):251–274CrossRefGoogle Scholar
  11. Conrad ME, Thomas DM, Flexser S, Vennemann TW (1997) Fluid flow and water–rock interaction in the East Rift Zone of Kilauea Volcano, Hawaii. J Geophys Res 102(B7):15021–15037CrossRefGoogle Scholar
  12. Criss RE, Taylor HP Jr (1986) Meteoric-hydrothermal systems. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral Min Soc Am 16:373–424Google Scholar
  13. Criss RE, Gregory RT, Taylor HP Jr (1987) Kinetic theory of oxygen isotopic exchange between minerals and water. Geochim Cosmochim Acta 51:1099–1108CrossRefGoogle Scholar
  14. Demény A, Ahijado A, Casillas R, Vennemann TW (1998) Crustal contamination and fluid/rock interaction in the carbonatites of Fuerteventura (Canary Islands, Spain); a C, O, H isotope study. Lithos 44:101–115CrossRefGoogle Scholar
  15. Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Rev Mineral Geochem 43:319–364Google Scholar
  16. Farver JR (1989) Oxygen self-diffusion in diopside with application to cooling rate determinations. Earth Planet Sci Lett 92:356–396CrossRefGoogle Scholar
  17. Ferry JM, Mutti LJ, Zuccala GJ (1987) Contact metamorphism/hydrothermal alteration of Tertiary basalts from the Isle of Skye, northwest Scotland. Contrib Mineral Petrol 95:166–181CrossRefGoogle Scholar
  18. Flagler PA, Spray JG (1991) Generation of plagiogranite by amphibolite anatexis in oceanic shear zones. Geology 19:70–73CrossRefGoogle Scholar
  19. Forester RW, Taylor HP Jr (1977) 18O/16O, D/H, and 13C/12C studies of the Tertiary igneous complex of Skye, Scotland. Am J Sci 277:136–177CrossRefGoogle Scholar
  20. Fúster JM, Cendrero A, Gastesi P, Ibarrola E, López Ruiz J (1968) Geología y Volcanología de las Islas Canarias: Fuerteventura. Instituto “Lucas Mallada”, Consejo Superior de Investigaciones Científicas, Madrid, p 239Google Scholar
  21. Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman; evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755Google Scholar
  22. Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contrib Mineral Petrol 120(1):95–114Google Scholar
  23. Hobson A, Bussy F, Hernandez J (1998) Shallow-level migmatization of gabbros in a metamorphic contact aureole, Fuerteventura Basal Complex, Canary Islands. J Petrol 39(5):1025–1037CrossRefGoogle Scholar
  24. Hobson A, Bussy F, Hernandez J (2000) Migmatitic gabbros from a shallow-level metamorphic contact aureole, Fuerteventura Basal Complex, Canary Islands: role of deformation in melt segregation. In: Bagdassarov N, Laporte D, Thompson AB (eds) Physics and chemistry of partially molten rocks. Kluwer, Dordrecht, pp 209–227Google Scholar
  25. Hoefs J (1997) Stable isotope geochemistry, 4th edn. Springer, Berlin, p 201Google Scholar
  26. Hoernle K, Tilton G, Le Bas MJ, Duggen S, Garbe-Schönberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contrib Mineral Petrol 142:520–542CrossRefGoogle Scholar
  27. Holloway MI, Bussy F (2007) Trace element distribution among rock-forming minerals from metamorphosed to partially molten basic igneous rocks in a contact aureole (Fuerteventura, Canaries). Lithos (in press)Google Scholar
  28. Javoy M, Stillman CJ, Pineau F (1986) Oxygen and hydrogen isotope studies on the Basal Complexes of the Canary-Islands—implications on the conditions of their genesis. Contrib Mineral Petrol 92(2):225–235CrossRefGoogle Scholar
  29. Kasemann S, Meixner A, Vennemann T, Schmitt A, Widenbeck M (2001) Boron and oxygen isotope composition of certified reference materials NIST SRM 610/612, and reference materials JB-2G and JR-2G. Geostand Newslett 25:405–416CrossRefGoogle Scholar
  30. Koepke J, Berndt J, Bussy F (2003) An experimental study on the shallow-level migmatization of ferrogabbros from the Fuerteventura Basal Complex, Canary Islands. Lithos 69(3–4):105–125CrossRefGoogle Scholar
  31. Le Bas MJ, Rex DC, Stillman CJ (1986) The early magmatic chronology of Fuerteventura, Canary-Islands. Geol Mag 123(3):287–298CrossRefGoogle Scholar
  32. Mevel C (1988) Metamorphism in ocean layer 3, Gorringe Bank, Eastern Atlantic. Contrib Mineral Petrol 100:496–509CrossRefGoogle Scholar
  33. Muehlenbachs K (1986) Alteration of the oceanic crust and the 18O history of seawater. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral 16:425–444Google Scholar
  34. Muñoz M, Sagredo J (1994) Reajustes mineralógicos y geoquímicos producidos durante el metamorfismo de contacto de diques basalticos (Fuerteventura, Islas Canarias). Bol Soc Esp Min 17(1):86–87Google Scholar
  35. Nabelek PL (1991) Stable isotope monitors. In: Kerrick DM (ed) Contact metamorphism. Rev Mineral Min Soc Am 26:395–435Google Scholar
  36. Roselle GT, Baumgartner LP, Valley JW (1999) Stable isotope evidence of heterogeneous fluid infiltration at the Ubehebe Peak contact aureole, Death Valley National Park, California. Am J Sci 299:93–138Google Scholar
  37. Rumble D III, Hoering TC (1994) Analysis of oxygen and sulfur isotope ratios in oxide and sulfide minerals by spot heating with a carbon dioxide laser in a fluorine atmosphere. Acc Chem Res 27:237–241CrossRefGoogle Scholar
  38. Schmincke HU (1982) Volcanic and chemical evolution of the Canary Islands. In: von Rad U, Hinz K, Sarnthein M, Eugen S (eds) Geology of the Northwest African continental margin. Springer, BerlinGoogle Scholar
  39. Sharp ZD (1990) A laser-based microanalytical method for the in-situ determination of oxygen isotope ratios of silicates and oxides. Geochim Cosmochim Acta 54:1353–1357CrossRefGoogle Scholar
  40. Stakes DS, Taylor HP Jr (2003) Oxygen isotope and chemical studies on the origin of large plagiogranite bodies in northern Oman, and their relationship to the overlying massive sulphide deposits. In: Dilek Y, Robinson PT (eds) Ophiolites in Earth history. Geol Soc Specl Publ, vol 218, pp 315–351, LondonGoogle Scholar
  41. Stillman CJ (1987) A Canary Islands Dyke Swarm: implications for the formation of Oceanic Islands by extensional Fissural volcanism. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geol Assoc Can, Specl Paper 34:243–255Google Scholar
  42. Stillman CJ, Fuster JM, Bennellbaker MJ, Munoz M, Smewing JD, Sagredo J (1975) Basal complex of Fuerteventura (Canary-Islands) is an oceanic intrusive complex with rift-system affinities. Nature 257(5526):469–471CrossRefGoogle Scholar
  43. Taylor HP Jr (1971) Oxygen isotope evidence for large-scale interaction between meteoric ground waters and Tertiary granodiorite intrusions, Western Cascade Range, Oregon. J Geophys Res 76:7855–7874CrossRefGoogle Scholar
  44. Taylor HP Jr, Forester RW (1979) An oxygen and hydrogen isotope study of the Skaergaard intrusion and its country rocks: a description of a 55-M.Y. old fossil hydrothermal system. J Petrol 20(3):355–419Google Scholar
  45. Thirlwall MF, Jenkins C, Vroon PZ, Mattey DP (1997) Crustal interaction during construction of ocean islands: Pb–Sr–Nd–O isotope geochemistry of the shield basalts of Gran Canaria, Canary Islands. Chem Geol 135(3):233–262CrossRefGoogle Scholar
  46. Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes. Rev Mineral Min Soc Am 16:445–489Google Scholar
  47. Valley JW (2001) Stable isotope thermometry at high temperatures. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Rev Mineral Geochem 43Google Scholar
  48. Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231CrossRefGoogle Scholar
  49. Witt-Eickschen G, Seck HA, Mezger K, Eggins SM, Altherr R (2003) Lithospheric mantle evolution beneath the Eifel (Germany): constraints from Sr–Nd–Pb isotopes and trace element abundances in spinel peridotite and pyroxenite xenoliths. J Petrol 44:1077–1095CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Institute of Mineralogy and Geochemistry, AnthropoleUniversity of LausanneLausanneSwitzerland

Personalised recommendations