Advertisement

Contributions to Mineralogy and Petrology

, Volume 154, Issue 6, pp 707–716 | Cite as

Diffusion-controlled biotite breakdown reaction textures at the solid/liquid transition in the continental crust

  • Pierre BarbeyEmail author
Original Paper

Abstract

Two-phase quartz intergrowths with garnet, cordierite and tourmaline occur commonly in prograde high-temperature migmatites, granulites, as well as in the last crystallization stages of biotite granites. Structural, microtextural and mineralogical data show that they result from the breakdown of biotite in the presence of a melt phase associated with incongruent dissolution of feldspars into the melt and silica release (giving quartz in silica saturated rocks). Biotite breakdown and growth of Al-rich ferromagnesian minerals, occurring at the solid–liquid transition in the crust (early melting or final crystallization), is kinetically controlled by Fe and Mg mass transport, the network-forming cations Si and Al being locally compensated for by feldspar dissolution/crystallization. This process leads to significant changes with respect to equilibrium dehydration-melting reactions wherein quartz is a reactant and K-feldspar a reaction product. Therefore, quartz inclusions commonly occurring in garnets from granulite-facies metapelites and metagraywackes are not simply grains passively included during garnet growth. They may also correspond to newly crystallized phases. Resorption of feldspar may lead to more alkaline melt and to crystalline residue richer in Al than expected under equilibrium conditions. Hence, excess alumina in granulite-facies rocks is not necessarily related to initial alumina-rich whole-rock compositions (as currently considered), but may be due, at least partly, to kinetics of melting.

Keywords

Chemical diffusion Intergrowths Garnet Cordierite Tourmaline 

Notes

Acknowledgments

Thanks to M. Pichavant for thoughtful comments on an early version of this manuscript, N. Le Breton for discussion on dehydration melting reactions, and G. Libourel for providing me with samples of Solenzara granulites. Thoughtful comments and suggestions by an anonymous reviewer and J. Touret are gratefully acknowledged.

References

  1. Acosta-Vigil A, Pereira MD, Shaw DM, London D (2001) Contrasting behaviour of boron during crustal anatexis. Lithos 56:15–31CrossRefGoogle Scholar
  2. Barbey P, Bertrand JM, Angoua S, Dautel D (1989) Petrology and U/Pb chronology of the Telohat migmatites (Aleksod, Central Hoggar). Contrib Mineral Petrol 101:207–219CrossRefGoogle Scholar
  3. Barbey P, Marignac G, Montel JM, Macaudière J, Gasquet D, Jabbori J (1999) Cordierite growth textures and the conditions of genesis and emplacement of crustal granitic magmas: the Velay granite complex (Massif Central, France). J Petrol 40:1425–1441CrossRefGoogle Scholar
  4. Benard F, Moutou P, Pichavant M (1985) Phase relations of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J Geol 93:271–291Google Scholar
  5. Bouchez JL, Delas C, Gleizes G, Nédélec A, Cuney M (1992) Submagmatic microfractures in granites. Geology 20:35–38CrossRefGoogle Scholar
  6. Brown GC, Fyfe WS (1970) The production of granitic melts during ultrametamorphism. Contrib Mineral Petrol 28:310–318CrossRefGoogle Scholar
  7. Burnham CW (1967) Hydrothermal fluids at the magmatic stage. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Reinhart and Winston, New York, pp 38–76Google Scholar
  8. Clemens JD (1984) Water contents of intermediate to silicic magmas. Lithos 11:213–287Google Scholar
  9. Clemens JD (1991) The granulite-granite connexion. In: Vielzeuf D, Videl Ph (eds) Granulites and crustal evolution. Kluwer, Amsterdam, pp 25–36Google Scholar
  10. Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306CrossRefGoogle Scholar
  11. Clemens JD, Wall VJ (1988) Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos 21:53–66CrossRefGoogle Scholar
  12. Clemens JD, Watkins JM (2001) The fluid regime of high-temperature metamorphism during granitoid magma genesis. Contrib Mineral Petrol 140:600–606Google Scholar
  13. Didier J, Dupraz J (1985) Magmatic and metasomatic cordierite in the Velay granitic massif. In: Augusthitis A (ed) The crust: the significance of granite-gneiss in the lithosphere. Theophrastus, Athens, pp 35–77Google Scholar
  14. Fougnot J, Pichavant M, Barbey P (1996) Biotite resorption in dacite lavas from northeastern Algeria. Eur J Mineral 8:625–638Google Scholar
  15. Friends CRL (1981) Charnockite, granite formation and influx of CO2 at Kabbaldurga. Nature 294:550–552CrossRefGoogle Scholar
  16. Garcia MO, Jacobson SS (1979) Crystal clots, amphibole fractionation and the evolution of calc-alkaline magmas. Contrib Mineral Petrol 69:319–327CrossRefGoogle Scholar
  17. Grant JA (1985) Phase equilibria in partial melting of pelitic rocks. In: Ashworth JR (ed) Migmatites. Blackie and Son, Glascow, pp 86–144Google Scholar
  18. Grant JA (1986) The isocon diagram - A simple solution to Gresen’s equation for metasomatic alteration. Econ Geol 81: 1976–1982CrossRefGoogle Scholar
  19. Hammouda T, Pichavant M (1999) Kinetics of melting of fluorphlogopite-quartz pairs at 1 atmosphere. Eur J Mineral 11:637–653Google Scholar
  20. Hammouda T, Pichavant M (2000) Kinetics of melting of fluorphlogopite-plagioclase pairs at 1 atmosphere: Eur J Mineral 12:315–328Google Scholar
  21. Hibbard MJ, Waters RJ (1985) Fracturing and dyking in incompletely crystallized granite plutons. Lithos 18:1–12CrossRefGoogle Scholar
  22. Janardhan AS, Newton RC, Hansen EC (1982) The transformation of amphibolite facies gneiss to charnockite in southern Karnataka and northern Tamil Nadu, India. Contrib Mineral Petrol 79:130–149CrossRefGoogle Scholar
  23. Kaczor SM, Hanson GN, Peterman ZE (1988) Disequilibrium melting of granite at the contact with a basic plug: a geochemical and petrographic study. J Geol 96:61–78CrossRefGoogle Scholar
  24. Korzinski DS (1959) Physicochemical basis of the analysis of the paragenesis of minerals. Consultants Bureau, New York, p 142Google Scholar
  25. Lardeaux JM, Menot RP, Libourel G (1990) Metamorphic events in the Variscan basement of Corsica. In: Keppie JD, Santallier D, Piqué A (eds) Variscan terranes in France and related areas. Springer, NewYorkGoogle Scholar
  26. Le Breton N, Thompson AB (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib Minereral Petrol 99:226–237CrossRefGoogle Scholar
  27. Liang Y, Richter FM, Davis AM, Watson EB (1996) Diffusion in silicate melts: I. Self diffusion in CaO–Al2O3–SiO2 at 1500°C and 1 GPa. Geochim Cosmochim Acta 60:4353–4367CrossRefGoogle Scholar
  28. London D (1999) Stability of tourmaline in peraluminous granite systems: boron cycle from anatexis to hydrothermal aureoles. Eur J Mineral 11:253–262Google Scholar
  29. Montel JM, Marignac C, Barbey P, Pichavant M (1992) Thermobarometry and granite genesis: the Hercynian low-P, high-T Velay anatectic dome (French/Massif Central). J Metam Geol 10:1–15CrossRefGoogle Scholar
  30. Nair R, Chacko T (2002) Fluid-absent melting of high-grade semi-pelites: P-T constraints on orthopyroxene formation and implications for granulite genesis. J Petrol 43:2121–2142CrossRefGoogle Scholar
  31. Nemec D (1975) Genesis of tourmaline spots in leucocratic granites. N Jahrb Mineral Monatsh 7:308–317Google Scholar
  32. Newton RC, Smith JV, Windley BF (1980) Carbonic metamorphism, granulites and crustal growth. Nature 288:45–50CrossRefGoogle Scholar
  33. Patiño Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and amphibolite from 3 to 15 kbar. J Petrol 36:707–738Google Scholar
  34. Patiño Douce AE, Beard JS (1996) Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. J Petrol 37:999–1024CrossRefGoogle Scholar
  35. Pichavant M, Kontak DJ, Herrera JV, Clark AH (1988) The Miocene-Pliocene Macusani Volcanics, SE Peru. I. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contrib Mineral Petrol 100:300–324CrossRefGoogle Scholar
  36. Pushkar P, Stoeser DB (1975) 87Sr/86Sr ratios in some volcanic rocks and some semifused inclusions of the San Francisco volcanic field. Geology 3:669–671CrossRefGoogle Scholar
  37. Raith M, Srikantappa C, Shamanjari KG, Spieering B (1990) The granulite terrane of the Nilgiri Hills (Southern India): characterization of high-grade metamorphism. In: Vielzeuf D, Vidal P (eds) Granulites and crustal differentiation, NATO ASI C-311. Kluwer, Dordrecht, pp 339–365Google Scholar
  38. Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications continental growth and crust-mantle recycling. J Petrol 36:891–931Google Scholar
  39. Rozendaal A, Bruwer L (1995) Tourmaline nodules: indicators of hydrothermal alteration and Sn–Zn-(W) mineralization in the Cape Granite Suite, South Africa. J Afr Earth Sci 21:141–155CrossRefGoogle Scholar
  40. Rushmer T (1991) Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contrib Mineral Petrol 107:41–59CrossRefGoogle Scholar
  41. Rutherford MJ, Hill PM (1993) Magma ascent rates from apmphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helenns eruptions. J Geophys Res 98:19667–19685CrossRefGoogle Scholar
  42. Samson IM, Sinclair WD (1992) Magmatic hydrothermal fluids and the origin of quartz-tourmaline orbicules in the Seagull batholith, Yukon Territory. Can Mineral 30:937–954Google Scholar
  43. Sawyer EW (1991) Disequilibrium melting and the rate of melt-residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. J Petrol 32:701–738Google Scholar
  44. Sinclair WD, Richardson JM (1992) Quartz-tourmaline orbicules in the Seagull batholith, Yukon Territory. Can Mineral 30:923–935Google Scholar
  45. Skjerlie KP, Johnston AD (1996) Vapour-absent melting from 10 to 20 kbar of crustal rocks that contain multiple hydrous phases: Implications for anatexis in the deep to very deep continental crust and active continental margins. J Petrol 37:661–691CrossRefGoogle Scholar
  46. Swanson SE, Mirante DC, Schrader CM, Tracy BJ, Wolak CE, Roden MF (2001) Undercooling in granitoid systems; an example from Stone Mtn., Georgia. Geol Soc Am 33:29 (abstracts with programs)Google Scholar
  47. Thompson AB (1976) Mineral reactions in pelitic rocks: I. Prediction of P-T-X (Fe, Mg) phase relations. Am J Sci 276:401–424CrossRefGoogle Scholar
  48. Thompson AB (1982) Dehydration melting of pelitic rocks and the generation of H2O-undersaturated granitic liquids. Am J Sci 282:1567–1595CrossRefGoogle Scholar
  49. Touret JLR (1971) Le faciès granulite en Norvège méridionale. II. Les inclusions fluides. Lithos 4:423–435CrossRefGoogle Scholar
  50. Touret JLR (1989) Fluid control in the lower crust. Publ Hefte 1 (Gesteinfluiden), Niedersächsische Akad Geowis. Hannover, pp 47–58Google Scholar
  51. Touret JLR (1992) CO2 transfer between upper mantle and the atmosphere: temporary storage in the lower continental crust. Terra Nova 4:87–98CrossRefGoogle Scholar
  52. Touret JLR, Dietvorst (1983) Fluid inclusions in high-grade anatectic metamorphites. J Geol Soc Lond 140:635–649Google Scholar
  53. Touret JLR, Hansteen TH (1988) Geothermobarometry and fluid inclusions in a rock from the Doddabetta charnockite complex, Southwest India. Rend Soc Ital Mineral Petrol 43:65–82Google Scholar
  54. Touret JLR, Hartel THD (1990) Synmetamorphic fluid inclusions in granulites. In: Vielzeuf D, Videl Ph (eds) Granulites and crustal evolution. Kluwer, Amsterdam, pp 397–417Google Scholar
  55. Touret JLR, Smirnov SZ, Peretyazhko IS, Zagorsky VY, Thomas VG (2007) Magmatic/hydrothermal transition in tourmaline-bearing miarolitic pegmatites: Hydrosaline fluids or silica gels? In: Intern Symp “Granitic Pegmatites: The Sate of the Art” 6–12 May 2007, Porto, abstract 2pGoogle Scholar
  56. Vernon RH, Flood RH, D’Arcy WF (1987) Sillimanite and andalusite produced by base-cation leaching and contact metamorphism of felsic igneous rocks. J Metam Geol 5:439–450CrossRefGoogle Scholar
  57. Vielzeuf D, Holloway JR (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contrib Mineral Petrol 98:257–276CrossRefGoogle Scholar
  58. Vielzeuf D, Montel JM (1994) Partial melting of metagreywackes. Part I. Fluid-absent experiments and phase relationships. Contrib Mineral Petrol 117:375–393CrossRefGoogle Scholar
  59. Vielzeuf D, Schmidt (2001) Melting relations in hydrous systems revisited: application to metapelites, metagraywackes and metabasalts. Contrib Mineral Petrol 141:251–267CrossRefGoogle Scholar
  60. Vielzeuf D, Vidal P (1990) Granulites and crustal differentiation. NATO ASI C-311. Kluwer, Dordrecht, pp 1–6Google Scholar
  61. Vigneresse JL, Barbey P, Cuney M (1996) Rheological transitions during partial melting and crystallisation with application to felsic magma segregation and transfer. J Petrol 37:1579–1600CrossRefGoogle Scholar
  62. Waters DJ (1997) Metamorphic zonation and thermal history of pelitic gneisses from western Namaqualand, South Africa. Trans Geol Soc South Afr 89:97–102Google Scholar
  63. Waters DJ (2001) The significance of prograde and retrograde quartz-bearing intergrowth microstructures in partially melted granulite-facies rocks. Lithos 56:97–110CrossRefGoogle Scholar
  64. Weber C, Pichavant M, Barbey P (1985) La cordiérite dans le domaine anatectique du Velay (Massif Central français): un marqueur de l’anatexie, du magmatisme et de l’hydrothermalisme. C R Acad Sci Paris 301:303–308Google Scholar
  65. Wolf M.B., London D (1997) Boron in granitic magmas: stability of tourmaline in equilibrium with biotite and cordierite. Contrib Mineral Petrol 130:12–30CrossRefGoogle Scholar
  66. Wyborn D, Chappell BW, Johnston RM (1981). Three S-type volcanic suites from the Lachlan fold belt, southeast Australia. J Geophys Res 86(B11):10335–10348Google Scholar
  67. Zeng L, Saleeby JB, Asimow P (2005) Nd isotope disequilibrium during crustal anatexis: a record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology 33:53–56CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.CRPG-CNRS, Nancy UniversitéVandoeuvre-lès-Nancy CedexFrance

Personalised recommendations