Contributions to Mineralogy and Petrology

, Volume 154, Issue 3, pp 335–356 | Cite as

Behaviour of zircon in high-grade metamorphic rocks: evidence from Hf isotopes, trace elements and textural studies

Original Paper

Abstract

Hf isotopic data of minerals in a mafic pyroxene granulite from the southern Bohemian Massif, together with their major and trace element composition and petrological observations were used to decipher the metamorphic history and behaviour of zircon in the granulite. The Hf isotopic composition in the minerals was used to estimate whether the decompression reaction, namely the consumption of garnet and rutile, could have provided Zr for the formation of newly grown metamorphic zircon. The age of the decompression reaction indicated by the evolution of Hf isotopes in garnet and orthopyroxene is between 333 and 331 Ma, i.e. ca. 7 Ma younger than the available U–Pb zircon ages from the Moldanubian granulites and than the newly obtained 343 ± 2 Ma laser ablation ICP-MS U–Pb age of zircons. The combination of bulk and in-situ Hf isotopic data, major and trace element composition and petrological modeling of P–T evolution revealed that the formation of zircons can not be related to the decompression phase of the evolution of the mafic granulites.

Keywords

Hf isotopes Zircon Granulite U–Pb dating Laser ablation ICP-MS Garnet Decompression Metamorphic reaction 

Supplementary material

References

  1. Aftalion M, Bowes DR, Vrána S (1989) Early Carboniferous U–Pb zircon age of garnetiferous, perpotassic granulites, Blanský les massif, Czechoslovakia. Neues Jahrbuch für Mineralogie, Monatshefte 4:145–152Google Scholar
  2. Andersen CA, Hinthorne JR (1972) U, Th, Pb and REE abundances and 207Pb/206Pb ages of individual minerals in returned lunar material by ion microprobe mass analysis. Earth Planet Sci Lett 14:195–200CrossRefGoogle Scholar
  3. Andersen T, Griffin WL (2004) Lu-Hf and U-Pb isotope systematics of zircon from the Storgangen Intrusive Complex, SW Norway; implications for the composition and evolution of Precambrian lower crust in the Baltic Shield. Lithos 73:271–288CrossRefGoogle Scholar
  4. Bingen B, Austrheim H, Whitehouse M (2001) Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of W. Norway and implications for zircon geochronology. J Petrol 42:355–375CrossRefGoogle Scholar
  5. Bingen B, Austrheim H, Whitehouse MJ, Davis WJ (2004) Trace element signature and U–Pb geochronology of eclogite-facies zircon, Bergen Arcs, Caledonides of W Norway. Contrib Mineral Petrol 147: 671–683CrossRefGoogle Scholar
  6. Blichert-Toft J, Albarède F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258CrossRefGoogle Scholar
  7. Carswell DA, O’Brien PJ (1993) Thermobarometry and geotectonic significance of high-pressure granulites: examples from the Moldanubian zone of the Bohemian Massif in Lower Austria. J Petrol 34:427–459Google Scholar
  8. Cherniak DJ, Hanchar JM, Watson EB (1997) Diffusion of tetravalent cations in zircon. Contrib Mineral Petrol 127:383–390CrossRefGoogle Scholar
  9. Compston W (1996) SHRIMP: origins, impact and continuing evolution. J R Soc West Austr 79:109–117Google Scholar
  10. Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from Lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89B:525–534CrossRefGoogle Scholar
  11. Cooke RA (2000) High-pressure/temperature metamorphism in the St. Leonhard Granulite Massif, Austria: evidence from intermediate pyroxene-bearing granulites Int J Earth Sci 89:631–651CrossRefGoogle Scholar
  12. Dallmeyer RD, Franke W, Weber K (eds) (1995) Pre-permian geology of Central and Eastern Europe. Springer, BerlinGoogle Scholar
  13. DeBièvre P, Taylor PDP (1993) Table of the isotopic composition of the elements. Int J Mass Spectrom Ion Process 123:149–166CrossRefGoogle Scholar
  14. Degeling H, Eggins S, Ellis DJ (2001) Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral Mag 65:749–758CrossRefGoogle Scholar
  15. Fiala J, Fuchs G, Wendt JI (1995) Moldanubian zone—stratigraphy. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Berlin, pp 417–428Google Scholar
  16. Fiala J, Matějovská O, Vaňková V (1987) Moldanubian granulites and related rocks: petrology, geochemistry, and radioactivity. Rozpravy Ceskoslovenske akademie ved, rada matematickych a prırodnıch ved 97:1–102Google Scholar
  17. Finger F, Cooke RA (2004) Evidence for the presence of a trace-element-loaded interstitial partial melt in a moldanubian leucocratic granulite derived from LA-ICP-MS analyses of zircons and rutiles. International workshop on petrogenesis of granulites and related rocks, Náměšť nad Oslavou, 1–3 October 2004, special publication of the Moravian Museum in Brno, pp 35–36Google Scholar
  18. Franke W (1989) Tectonostratigraphic units in the Variscan Belt of Central Europe. Geol Soc Am Spec Pap 230:67–90Google Scholar
  19. Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geological Society, London, Special Publication 179. Geological Society, London, pp 35–61Google Scholar
  20. Fraser G, Ellis D, Eggins S (1997) Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25:607–610CrossRefGoogle Scholar
  21. Friedl G, Cooke R, Finger F, McNaughton NJ, Fletcher A (2003) U–Pb SHRIMP dating and trace element investigations on multiple zoned zircons from a South-Bohemian granulite. J Czech Geol Soc 48:51–52Google Scholar
  22. Fuchs G, Matura M (1976) Zur Geologie des Kristallins der süddlichen Böhmishe Masse. Jahr Geol Bund 119:1–43Google Scholar
  23. Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50Google Scholar
  24. Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147CrossRefGoogle Scholar
  25. Hermann J (2002) Allanite: thorium and light rare earth element carrier in subducted crust. Chem Geol 192:289–306CrossRefGoogle Scholar
  26. Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Met Geol 21:833–852Google Scholar
  27. Hirata T, Nesbitt RW (1995) U–Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochim Cosmochim Acta 59:2491–2500CrossRefGoogle Scholar
  28. Hokada T, Harley SL (2004) Zircon growth in UHT leucosome: constraints from zircon-garnet rare earth elements (REE) relations in Napier Complex, East Antarctica. J Mineral Petrol Sci 99:180–190CrossRefGoogle Scholar
  29. Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69(3):637–648CrossRefGoogle Scholar
  30. Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Met Geol 18:423–439CrossRefGoogle Scholar
  31. Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62CrossRefGoogle Scholar
  32. Jackson SE, Longerich HP, Dunning R, Fryer BJ (1992) The application of laser-ablation microprobe-inductively coupled plasma mass spectrometry LAM-ICP-MS to in situ trace element determinations in minerals. Can Mineral 30:1049–1064Google Scholar
  33. Jackson SE, Longerich HP, Horn I, Dunning R (1996) The application of laser ablation microprobe (LAM)-ICP-MS to in situ U–Pb zircon geochronology. J Conf Abstr 1:283Google Scholar
  34. Janoušek V, Finger F, Roberts M, Frýda J, Pin Ch, Dolejš D (2004) Deciphering the petrogenesis of deeply buried granites: whole-rock geochemical constraints on the origin of largely undepleted felsic granulites from the Moldanubian Zone of the Bohemian Massif. Trans R Soc Edinb Earth Sci 95:141–159Google Scholar
  35. Kelly NM, Harley SL (2005) An integrated microtextural and chemical approach to zircon geochronology: refining the Archaean history of the Napier Complex, east Antarctica. Contrib Mineral Petrol 149(1):57–84CrossRefGoogle Scholar
  36. Kinny PD, Maas R (2003) Lu–Hf and Sm–Nd isotope systems in zircon. Rev Mineral Petrol 53:327–341Google Scholar
  37. Koepke J, Behrens H (2001) Trace element diffusion in andesitic melts: an application of synchrotron X-ray fluorescence analysis. Geochim Cosmochim Acta 65(9):1481–1498CrossRefGoogle Scholar
  38. Košler J, Fonneland H, Sylvester P, Tubrett M, Pedersen RB (2002) U–Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques. Chem Geol 182:605–618CrossRefGoogle Scholar
  39. Košler J, Sylvester PJ (2003) Present trends and the future of zircon in geochronology: laser ablation ICP-MS. Rev Mineral Geochem 53:243-275CrossRefGoogle Scholar
  40. Kotková J, Gerdes A, Parrish RR, Novák M (2003) Pressure–temperature–time evolution of granulite clasts from Lower Carboniferous conglomerates—evidence for rapid exhumation at the eastern margin of the Variscan Bohemian Massif. Geophys Res Abstr 5:434Google Scholar
  41. Kotková J, Harley SL (1997) Mineral controls on the trace element and REE geochemistry of high-pressure leucogranulites from the Bohemian Massif. J Czech Geol Soc 42:40Google Scholar
  42. Kretz R (1983) Symbols for rock forming minerals. Am Mineral 68:277–279Google Scholar
  43. Kröner A, O’Brien PJ, Nemchin AA, Pidgeon RT (2000) Zircon ages for high pressure granulites from South Bohemia, Czech Republic, and their connection to Carboniferous high temperature processes. Contrib Mineral Petrol 138:127–142CrossRefGoogle Scholar
  44. Kröner A, Wendt I, Liew TC, Compston W, Todt W, Fiala J, Vaňková V, Vaněk J (1988) U–Pb zircon and Sm–Nd model ages of high-grade Moldanubian metasediments, Bohemian Massif, Czechoslovakia. Contrib Mineral Petrol 99:257–266CrossRefGoogle Scholar
  45. Lapen TJ, Mahlen NJ, Johnson CM, Beard BL (2004) High precision Lu and Hf isotope analyses of both spiked and unspiked samples: a new approach. Geochem Geophys Geosyst 5. doi:10.1029/2003GC000582
  46. Ludwig KR (2003) User’s manual for Isoplot v. 3.00, a geochronological toolkit for Microsoft Excel, Berkeley Geochronological Center, Special Publication no. 4Google Scholar
  47. Matte P, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large-scale Variscan shearing. Tectonophysics 177:151–170CrossRefGoogle Scholar
  48. Mezger K, Krogstad EJ (1997) Interpretation of discordant U–Pb zircon ages: an evaluation. J Met Geol 15:127–140CrossRefGoogle Scholar
  49. Möller A, O’Brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway) constraints for Pb diffusion in zircon. J Met Geol 20:727–740CrossRefGoogle Scholar
  50. Munker C, Weyer S, Scherer E, Mezger K (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICP-MS measurements, Geochem Geophys Geosyst 2 (12). doi:10.1029/2001GC000183
  51. Naslund HR (1987) Lamellae of baddeleyite and Fe-Cr-spinel in ilmenite from the Basistoppen sill, East Greenland. Can Mineral 25:91–96Google Scholar
  52. O’Brien PJ, Rötzler J (2003) High-pressure granulites: formation, recovery of peak conditions and implications for tectonics. J Met Geol 21:3–20CrossRefGoogle Scholar
  53. O’Brien PJ, Vrána S (1995) Eclogites with a short-lived granulite facies overprint in the Moldanubian Zone, Czech Republic: petrology, geochemistry and diffusion modelling of garnet zoning. Geol Rundsch 84:473–488CrossRefGoogle Scholar
  54. Owen JV, Dostal J (1996) Contrasting corona structures in mafic granulite from the Blanský Les complex, Bohemian Massif, Czech Republic. Can Mineral 34:959–966Google Scholar
  55. Pan Y (1997) Zircon- and monazite-forming metamorphic reactions at Manitouwadge, Ontario. Can Mineral 35:105–118Google Scholar
  56. Patchett PJ, Tatsumoto M (1980) A routine high-precision method for Lu–Hf isotope geochemistry and chronology. Contrib Mineral Petrol 75:263–267CrossRefGoogle Scholar
  57. Pettke T, Audétat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW, Ausralia), Part II: Evolving zircon and thorite trace element chemistry. Chem Geol 220:191–213CrossRefGoogle Scholar
  58. Roberts MP, Finger F (1997) Do U–Pb zircon ages from granulites reflect peak metamorphic conditions? Geology 25:319–322CrossRefGoogle Scholar
  59. Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184:123–138CrossRefGoogle Scholar
  60. Schaltegger U, Fanning CM, Günther D, Maurin JC, Schulmann K, Gebauer D (1999) Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in-situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contrib Mineral Petrol 134:186–201CrossRefGoogle Scholar
  61. Scherer EE, Münker C, Mezger K (2001) Calibration of the Lu–Hf Clock. Science 293:683–687CrossRefGoogle Scholar
  62. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes. In: Sanders AD, Norry MJ (eds) Magmatism in the ocean basins. Geological Society Special Publication, London, pp 313–345Google Scholar
  63. Svojtka M, Košler J, Venera Z (2002) Dating granulite-facies structures and the exhumation of lower crust in the Moldanubian Zone of the Bohemian Massif. Int J Earth Sci 91:373–385CrossRefGoogle Scholar
  64. Thirlwall MF, Walder AJ (1995) In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry. Chem Geol 122:241–247CrossRefGoogle Scholar
  65. Thost DE, Hensen BJ, Motoyoshi Y (1991) 2-Stage decompression in garnet-bearing mafic granulites from Sostrene Island, Prydz Bay, East Antarctica. J Metamorph Geol 9(3):245–256CrossRefGoogle Scholar
  66. Tomaschek F, Kennedy A, Villa I, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallisation and mobilization of zircon during high pressure metamorphism. J Petrol 44(11):1977–2002CrossRefGoogle Scholar
  67. Tropper P, Konzett Y, Finger F (2005) Experimental constraints on the formation of high-P/high-T granulites in the Southern Bohemian Massif. Eur J Mineral 17(2):343–356CrossRefGoogle Scholar
  68. van Breemen O, Aftalion M, Bowes DR, Dudek A, Mísař Z, Povondra P, Vrána, S (1982) Geochronological studies of the Bohemian Massif, Czechoslovakia, and their significance in the evolution of Central Europe. Trans R Soc Edinb Earth Sci 73(for 1982):89–108Google Scholar
  69. Vavra G, Gebauer D, Schmidt R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps) an ion microprobe (SHRIMP) study. Contrib Mineral Petrol 122:337–358CrossRefGoogle Scholar
  70. Vavra G, Schmid R, Gebauer D (1999) Internal morphology, habit and U–Th–Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib Mineral Petrol 134:380–404CrossRefGoogle Scholar
  71. Vrána S, Blümel P, Petrakasis K (1995) Metamorphic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-permian geology of Central and Eastern Europe. Springer, Heidelberg, pp 453–466Google Scholar
  72. Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433CrossRefGoogle Scholar
  73. Wendt JI, Kröner A, Fiala J, Todt W (1994) U–Pb zircon and Sm–Nd dating of Moldanubian HP/HT granulites from south Bohemia, Czech Republic. J Geo Soc Lond 151:83–90Google Scholar
  74. Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145:61–74CrossRefGoogle Scholar
  75. Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand Newslett 19:1–23CrossRefGoogle Scholar
  76. Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks WC III, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes, vol 7. Rev Econ Geol, pp 1–35Google Scholar
  77. Williams IS, Buick IS, Cartwright I (1996) An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, central Australia. J Met Geol 14:29–47CrossRefGoogle Scholar
  78. Zack T, Moraes R, Kronz A (2004) Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib Mineral Petrol 148:471–488CrossRefGoogle Scholar
  79. Zoubek V (1974) Remarques sur le Precambrien des zones mobiles de l’Europe Centrale et Occidentale. In: Zoubek V (ed) Precambrien des zones mobiles de l’Europe, Conf PICG, Liblice, Academia Prague, pp 33–62Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Petrology and Structural GeologyCharles UniversityPrague 2Czech Republic
  2. 2.Institute of GeologyAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  3. 3.Department of Earth ScienceUniversity of BergenBergenNorway

Personalised recommendations