Contributions to Mineralogy and Petrology

, Volume 153, Issue 4, pp 405–416

Textural evolution of polyhedral olivine experiencing rapid cooling rates

  • François Faure
  • Pierre Schiano
  • Gilles Trolliard
  • Christian Nicollet
  • Bernard Soulestin
Original Paper

Abstract

Dynamic crystallization experiments in the CaO–MgO–Al2O3–SiO2 (CMAS) system have been used to investigate the change in crystal shape when pre-existing polyhedral olivine crystals are cooled rapidly (1,639–2,182°C/h). Polyhedral olivines are crystallized initially in a first step using a slow cooling rate (2°C/h), then skeletal and dendritic overgrowths develop on the polyhedral crystals during a subsequent fast cooling event. During this second episode small dendritic olivines also nucleate within the liquid phase. Observation of the experimental sample by optical microscopy shows that the polyhedral olivine shape progressively changes to a skeletal and then to a dendritic morphology in the following sequence: polyhedral ⇒ hopper polyhedral ⇒ dendritic polyhedral. This evolutional sequence is discussed in terms of changes in the crystal growth conditions during cooling and a general relation between these olivine dynamic crystallization experiments and the integrated model of crystal growth by Sunagawa (Bull Minér 104:81–87, 1981, Morphology of crystals, Terra Scientific Publishing Company, 1987) is proposed.

References

  1. Arndt NT (1994) Archean komatiites. In: Condie KC (eds) Archean crustal evolution. Elsevier, Amsterdam, pp 11–44Google Scholar
  2. Baronnet A (1984) Growth kinetics of the silicates. A review of basic concepts. Fortschr Miner 62:187–232Google Scholar
  3. Berg WF (1938) Crystal growth from solutions. Proc Royal Soc 164:79–95Google Scholar
  4. Cabane H, Laporte D, Provost A (2005) An experimental study of Ostwald ripening of olivine and plagioclase in silicate melts: implications for the growth and size of crystals in magmas. Contrib Miner Petrol 150:37–53CrossRefGoogle Scholar
  5. Chakraborty S (1997) Rates and mechanisms of Mg–Fe interdiffusion in olivine at 980°C. J Geophys Res 102:12317–12331CrossRefGoogle Scholar
  6. Chernov AA (1974) Stability of faceted shapes. J Cryst Growth. 24/25:11–31CrossRefGoogle Scholar
  7. Deer WA, Howie RA, Zussman J (1962) Orthosilicates. Longman Group ltd, LondonGoogle Scholar
  8. Devine JD, Rutherford MJ, Gardner JE (1998) Petrologic determination of ascent rate for the Soufriere Hills Volcano andesitic magma. Geophys Res Lett 25:3673–3676CrossRefGoogle Scholar
  9. Donaldson CH (1976) An experimental investigation of olivine morphology. Contrib Miner Petrol 57:187–213CrossRefGoogle Scholar
  10. Donaldson CH (1982) Spinifex-textured komatiites: a review of textures, compositions and layering. In: Arndt NT, Nisbet EG (eds) Komatiites. Allen and Unwin, London, pp 213–244Google Scholar
  11. Donaldson CH, Williams RJ, Lofgren G (1975a) A sample holding technique for study of crystal growth in silicate melts. Am Miner 60:324–326Google Scholar
  12. Donaldson CH, Williams TM, Lofgren GE (1975b) Experimental modeling of the cooling history of Apollo 12 olivine basalts. Proc 6th Lunar Sci Conf 843–870Google Scholar
  13. Faure F, Schiano P (2004) Crystal morphologies in pillow basalts: implications for mid-ocean ridge processes. Earth Planet Sci Lett 220:331–344CrossRefGoogle Scholar
  14. Faure F, Schiano P (2005) Experimental investigation of equilibration conditions during forsterite growth and melt inclusion formation. Earth Planet Sci Lett 236:882–898CrossRefGoogle Scholar
  15. Faure F, Trolliard G, Montel JM, Nicollet C (2001) Nano-petrographic investigation of a mafic xenolith (maar de Beaunit, Massif Central, France). Eur J Miner 13:27–40CrossRefGoogle Scholar
  16. Faure F, Trolliard G, Nicollet C, Montel JM (2003a) A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Miner Petrol 145:251–263Google Scholar
  17. Faure F, Trolliard G, Soulestin B (2003b) TEM investigation of forsterite dendrites. Am Miner 88:1241–1250Google Scholar
  18. Ingrin J, Poirier JP (1986) Transmission electron microscopy of ejecta from the XVIth century eruption of the Soufriere, Guadeloupe; microscopic evidence for magma mixing. J Volcanol Geotherm Res 28:161–174CrossRefGoogle Scholar
  19. Jambon A, Lussiez P, Clocchiatti R, Weisz J, Hernandez J (1992) Olivine growth rates in a tholeiitic basalt: an experimental study of melt inclusions in plagioclase. Chem Geol 96:277–287CrossRefGoogle Scholar
  20. Kirkpatrick RJ, Kuo LC, Melchior J (1981) Crystal growth in incongruently melting compositions: programmed cooling experiments with diopside. Am Miner 66:223–241Google Scholar
  21. Kossel W (1927) Zur theorie der kristallwachstums. Nachr Ges Göttingen 2:135–145Google Scholar
  22. Miyamoto M, McKay DS, McKay GA, Duke MB (1986) Chemical zoning and homogenization of olivines in ordinary chondrites and implications for thermal histories of chondrules. J Geophys Res 91:12804–12816CrossRefGoogle Scholar
  23. Morgan DJ, Blake S, Rogers NW, DeVivo B, Rolandi G, Macdonald R, Hawkesworth CJ (2004) Time scales of crystal residence and magma chamber volume from modelling of diffusion profiles in phenocrysts: Vesuvius 1944. Earth Planet Sci Lett 22:933–946CrossRefGoogle Scholar
  24. Nakagawa M, Wada K, Wood CP (2002) Mixed magmas, mush chambers and eruption triggers: evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu Volcano, New Zealand. J Petrol 43:2279–2303CrossRefGoogle Scholar
  25. Pan Y, Batiza R (2002) Mid-ocean ridge magma chamber processes: constraints from olivine zonation in lavas from the east Pacific rise at 9°30′N and 10°30′N. J Geophys Res 107:ECV 9–1–9–13Google Scholar
  26. Pyke DR, Naldrett AJ, Eckstrand OR (1973) Archean ultramafic flows in Munro Township, Ontario. Geol Soc Am Bull 84:955–978CrossRefGoogle Scholar
  27. Singer BS, Dungan MA (1995) Textures and Sr, Ba, Mg, Fe, K and Ti compositional profiles in volcanic plagioclase. Clues to the dynamics of calc-alkaline magma chambers. Am Miner 80:776–798Google Scholar
  28. Stamatelopoulou-Seymour K, Vlassopoulos D, Pearce TH, Rice C (1990) The record of magma chamber processes in plagioclase phenocrysts at Thera volcano, Aegean volcanic arc, Greece. Contrib Miner Petrol 104:73–84CrossRefGoogle Scholar
  29. Stranski IN (1928) Zur theorie des kristallwachstums. Z Phys Chem 136:259–278Google Scholar
  30. Sunagawa I (1981) Characteristics of crystal growth in nature as seen from the morphology of mineral crystals. Bull Minér 104:81–87Google Scholar
  31. Sunagawa I (1987) Morphology of minerals. In: Sunagawa I (ed) Morphology of crystals. Terra Scientific Publishing Company, Tokyo, pp 509–587Google Scholar
  32. Volmer M (1922) Crystal growth. Z Physik 9:193CrossRefGoogle Scholar
  33. Zellmer GF, Blake S, Vance D, Hawkesworth C, Turner S (1999) Plagioclase residence times at two island arc volcanoes (Kameni Islands, Santorini, and Soufriere, St Vincent) determined by Sr diffusion systematics. Contrib Miner Petrol 136:345–357CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • François Faure
    • 1
  • Pierre Schiano
    • 2
  • Gilles Trolliard
    • 3
  • Christian Nicollet
    • 2
  • Bernard Soulestin
    • 3
  1. 1.Centre de Recherche Pétrographiques et GéochimiquesCNRS-UPR2300Vandoeuvre les NancyFrance
  2. 2.Laboratoire Magmas et VolcansOPGC-Université Blaise Pascal-CNRSClermont-FerrandFrance
  3. 3.Science des Procédés Céramiques et de Traitements de SurfaceUMR 6638 CNRSLimoges CedexFrance

Personalised recommendations